
 

 
 

0 

 
  

Expanding the use of plant trait 
observations and ecological 

theory in Earth system models 

A Summary Report from the Terrestrial 
Ecosystem Science (TES) and Earth System 

Modeling (ESM) Workshop on Trait Methods for 
Representing Ecosystem Change  

Rockville, MD, 18-19 November 2015 
 



 1  

 
 

Expanding the use of plant trait observations 
and ecological theory in Earth system 

models 
 

DOE Workshop Report 
 
 

A Summary Report from the Terrestrial Ecosystem Science (TES) 
and Earth System Modeling (ESM) Workshop on  

Trait Methods for Representing Ecosystem Change;  
Rockville, MD, 18-19 November 2015 

 
 

Report Date: May 31, 2016 
 

Organizing Committee: 
Charles Koven1, Lara Kueppers1, Colleen Iversen2, Peter Reich3, 

Peter Thornton2 

 
 

1. Lawrence Berkeley National Laboratory 
2. Oak Ridge National Laboratory 

3. University of Minnesota 
 
 
 
 
 
Cover Photo credit: Charlie Koven  



 2  

Abstract 
 
Plants show a wide array of functional diversity, as evidenced by the wide range of plant 
traits that are measured worldwide.  This diversity in traits has important implications for 
the global carbon cycle and its feedbacks with climate change, as traits govern the key 
processes of plant growth, reproduction, and mortality that underlie the terrestrial carbon 
cycle.  Most Earth system models (ESMs) do not currently allow for key ecological 
processes of functional community assembly that determine plant trait distributions, and 
as a result must either specify fixed plant traits, or use dynamic vegetation models that 
may not capture critical responses of plant traits to global change.  Recent 
developments in synthesizing plant trait data via large collaborative databases have 
begun to identify key axes of plant trait variation, as well as the linkages between plant 
traits and environmental drivers, and the role of traits in ecosystem scale structure and 
function. These observations and relationships can be used to construct and test the 
next generation of ESMs that will better capture changes to plant trait distributions and 
their effects on the global carbon, water, nutrient, and energy cycles in a changing world. 
The Office of Biological and Environmental Research in the U.S. DOE’s Office of 
Science hosted a workshop to bring together a wide range of scientists with expertise in 
the observations and theory of plant functional trait diversity and ecosystem function to 
discuss ways to better include plant trait dynamics in ESMs.  Outcomes included a 
summarization of current and future research directions, identification of key 
observational and theoretical gaps, and an emphasis on the need to continue a range of 
diverse approaches for representing trait dynamics in ESMs. 
 
 

1. Introduction 
 
To be useful, Earth system models (ESMs) must capture important ecosystem 
processes including how these may feed back to environmental change. However, it 
remains a challenge for models to represent the wide variation in plant trait diversity 
within any given ecosystem (or model grid cell) as well as its sensitivity to, and influence 
on, the climate. Most ESMs use plant functional types (PFTs), which are lists of 
parameter values that govern plant processes represented in the models, differentiating 
plant physiology and growth form among groups such as needleleaf evergreen trees, 
broadleaf deciduous trees, shrubs, and grasses. Through PFTs, these ESMs already 
represent some diversity in plant traits—such as variation in maximum photosynthesis 
rates and phenology—that affect ecosystem processes. In November 2015, 36 scientists 
(participant list in Appendix) representing expertise in Earth system and ecosystem 
modeling, plant trait observations, and trait data synthesis and analysis met in Rockville, 
Md., to assess and expand the use of plant functional trait observations in ESMs. 
 
Presentations and discussions addressed theory of plant trait variation and underlying 
drivers, current and future model treatments of plant traits, data availability for model 
parameterization, initialization, and validation, and consequences for ESM predictions. 
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The workshop brought overlapping communities of researchers together to share current 
thinking and approaches to this issue.  It also provided a forum for new ideas useful for 
the ecological and Earth system research communities and for evolving the DOE 
strategies and approaches for field research, theory and land modeling in the Next 
Generation Ecosystem Experiments (NGEEs) in the Arctic and in the Tropics, as well as 
the Accelerated Climate Model for Energy (ACME). 
 

2. Workshop overview 
 

2.1. Plant functional traits and trait trade-offs across species, plant functional types, 
and biomes  
 
Plant traits have long occupied a central role in ideas about plant physiological 
functioning.  The large functional diversity of plants (Figure 1) is evident in looking 
across the world’s ecosystems, which can be traced to the set of traits that govern this 
diversity. In particular, leaf traits such as its thickness, as expressed by the metric Leaf 
Mass per unit Area (LMA), or its reciprocal Specific Leaf Area (SLA), have long been a 
focus of studies on plant productivity (e.g. Blackman et al., 1919, West et al., 1920). 
Such traits govern a wide variety of plant process rates, and vary continuously across 
the enormous range of environments on Earth (Reich et al., 1997). Modern efforts to 
synthesize information on plant traits have led to the creation of large databases, such 
as TRY (Kattge et al., 2011), with which the relationships among plant traits, and 
between plant traits and the abiotic environment, may be identified. Such analyses led to 

a number of key 
insights into the role of 
plant traits in governing 
behavior, such as (a) 
the correlation among 
traits into specific axes 
of variability, known as 
‘economic spectra’, 
including the leaf 
economic (Wright et al., 
2004) and wood 
economic spectra 
(Chave et al., 2009); (b) 
that variability along 
these economic spectra 
is in many cases 
closely related to 
abiotic environments; 
(c) that variation across 
these spectra can 

 
 
Figure 1. Variation in leaf size, shape, thickness and other 
properties. Credit: Jacek Oleksyn 
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generally be linked to the overall rate of resource acquisition and use by plants (Reich et 
al., 2014). 
  
Key gaps and uncertainties remain in our understanding of plant traits. In particular, 
observations of plant traits are sparse in type and number, and those that exist are 
extremely heterogeneous spatially; with databases such as TRY having much more 
information on well-studied traits such as leaf SLA and photosynthetic rates or wood 
density than on less-well studied traits such as other wood traits, bark traits, root traits, 
life history and reproductive traits; and with observations lacking in less developed and 
populated parts of the globe. Additionally, the number of ways in which plants differ from 
each other in ways that could plausibly affect ecosystem-level responses to global 
change is large, and at present poorly defined. 
 
A number of efforts are underway to fill these gaps.  One key activity is to broaden the 
set of traits that are included in large-scale syntheses of plant trait variability, in order to 
better understand both the variability of key plant traits and the roles that these traits 
play in governing plant function.  In particular, statistical approaches to estimating 
unobserved traits in large databases have the potential to more accurately extend our 
knowledge of well-observed traits to those that are less commonly observed.  
Furthermore, incorporating known relationships between plant traits and the abiotic 
environment may allow the creation of spatially-upscaled trait datasets. 
 
Several other key uncertainties remain in understanding how plant trait variation may 
influence ecosystem functioning at the scale at which it may affect overall Earth system 
dynamics.  One is the need to understand both the mechanistic basis and generality of 
observed trait correlations.  Some tradeoffs result directly from basic principles such as 
mass conservation, whereas others arise from more complex interactions between 
strategy and form (Scheiter et al., 2013).  The latter category may result in different 
relationships across different gradients.  For example (Lusk et al 2008), the intra-specific 
correlation between SLA and leaf longevity across a vertical canopy gradient often has 
the opposite trend as the interspecific relationship among species (even for plants with 
canopies in similar canopy strata). Although this particular countergradient is 
understood, identifying and resolving variation among scales in trait tradeoffs may give 
clues to the nature of the trade-offs and assist in identifying which trade-offs are 
generally conserved (and at what scales), enabling their better utility in models.  
 

2.2. Approaches to representing diversity and dynamism of plant traits in models 
 
ESMs and dynamic global vegetation models (DGVMs) have historically included 
representation of plant functional traits through their use of the plant functional type 
(PFT) concept.  PFTs can be defined simply as modeled vegetation entities with a given 
set of plant traits.  Historically, the traits that have primarily distinguished PFTs have 
been phenological traits (e.g. evergreen versus deciduous), gross allocation or form 
traits (e.g. trees versus shrub versus grass), photosynthetic pathway (C3 versus C4) and 
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biome-specific types to separate trait values from different regions.  Several other 
physiological traits are typically specified to covary with these types, including leaf 
properties (e.g., Vc,max, stomatal functioning traits), tissue turnover times, etc.   
 
The appeal of this coarse level of PFT aggregation is that trait data for PFTs, let alone 
individual species, are scarce in many parts of the world; additionally coarse PFT 
distributions can be readily initialized from or compared to large-scale remotely sensed 
observations.  However, many issues in this definition of traits have arisen.  These 
include the observation that plant traits may vary more within a given PFT than among 
PFTs, that many more PFTs than are typically used are required to capture key 
gradients in plant functioning, such as along successional gradients, and that typical 
PFT definitions fail to include the observed correlations among multiple traits that define 
plant economic spectra.  DGVMs—and those ESMs that include DGVMS—are quite 
diverse in construction, and use a wide variety of approaches for predicting PFT 
distributions. These approaches can be roughly ordered along a hierarchy of complexity, 
with bioclimatic rule-based models at the simple end, pseudo-competitive models (e.g. 
using Lotke-Volterra approaches) at the next level of complexity, and fully-resolved 
competitive models at the highest level of complexity.  Many DGVMs and ESMs use 
combinations of these approaches, for example including some sorts of resolved 
competition while also using bioclimatic thresholds to substitute for unresolved 
processes that determine PFT distributions. The bioclimatic approach may be able to 
match historical and paleo records over which such bioclimatic thresholds have been 
trained but has a poor basis for prediction in emerging novel climates. 
 
As a result of these issues, many new approaches are being developed to better include 
observed diversity of plant traits and better predict dynamic plant traits in ESM-scale 
DGVMs.  Three broad categories of model approaches encompass many of the specific 
approaches developed for individual models: here we will call then “correlative”, 
“optimizing”, and “competitive” approaches.  These are not necessarily exclusive, and in 
particular models may use one or another approach to define different suites of plant 
traits. Correlative approaches seek to enable dynamism and/or diversity in plant traits 
through the use of observed correlations between plant traits and abiotic environmental 
conditions. Optimizing approaches define a cost surface that defines the success of a 
given trait or traits contingent on a given set of environmental conditions, and then 
assumes that unresolved competitive processes will optimize the successful plants to 
have the optimal trait or traits for that condition. Competitive approaches seek to enable 
trait dynamism by explicitly allowing PFTs with differing plant traits to compete by 
resolving the processes of growth, reproduction, and mortality, in order to predict the 
successful strategies that will dominate in a given environmental condition. 
 
These approaches are summarized in Figure 2, which shows possible ways in which 
trait dynamics may be included in PFT-based models.  A key first principle is that 
correlations among traits should be respected in PFT models, as choosing a value for 
one particular trait may partially determine the possible range of values of a second trait.  
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Correlative or optimizing approaches may seek to set a given trait value for a given PFT 
directly either based on an observed relationship with an abiotic environment, or via 
optimizing a cost function as a consequence of that abiotic environment.  Competitive 
approaches will require growth and mortality processes to determine the fractional 
coverage of a given PFT, such that filtering by trait values may occur and lead to 
emergent ecosystem-level changes in the trait distributions.  The number of PFTs may 
need to be expanded to include variation along multiple axes, such as successional 
gradients and resistance to different agents of disturbance, as well as biome-level 

categories.  
Lastly, the 
number of plant 
traits may need 
to be expanded 
as the 
mechanistic 
basis for these 
traits is better 
resolved in 
models, to 
include traits 
that control 
processes such 
as hydraulic 
function, root 
nutrient 
acquisition, or 
mortality due to 
multiple agents. 
 
A key 
conceptual 
problem that 
has been 
encountered in 
the construction 
of trait-filtering 
models is the 
maintenance of 
functional 
diversity.  The 
idealized 
ecosystems 
represented in 
models cannot 

 
 

Figure 2. Possible approaches to representing dynamic plant traits 
within the context of plant functional types (PFTs) in ESMs.  PFTs 
in ESMs are essentially defined as a set of functional traits. In 
many ESMs, these PFTs are static.  A key observation in trait 
databases is the correlation between plant traits, such that a range 
of values of one trait in a PFT imply a range of values in another 
trait. Possible approaches to including more dynamic PFTs in 
ESMs include: (a) correlative or optimizing approaches to allow 
individual trait values to vary within a given PFT; or (b) competitive 
approaches whereby the traits comprising individual PFTs remain 
static but the PFT fractional coverage is dynamically determined by 
competition, which leads to changes in the community trait 
distributions. A greater diversity of PFTs is required to move 
beyond PFT-biome correspondance, and at the same time, greater 
mechanistic fidelity will require more traits to be present in models. 
Credit: Charlie Koven and Diana Swantek 
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include the remarkable heterogeneity of environments that exist in the real world; thus 
the number of distinct niches that different plant types may occupy is substantially 
smaller.  In the absence of heterogeneity, a single type of plant typically outcompetes 
others, giving rise to functionally non-diverse ecosystems. Approaches to increase the 
environmental heterogeneity in models, such as by including vertical gradients in light 
availability and in soil properties, allow some diversity to be maintained, and have a 
strong mechanistic basis for inclusion (e.g. Moorcroft et al., 2001).  Other approaches 
that may act to maintain diversity in the real world, such as inclusion of density-
dependent mortality due to pests, are in general poorly justified at the PFT level since 
such processes typically act on phylogenetic rather than functional categories as used in 
models, though they may be important and justified in low-diversity ecosystems. 
 
The correlative, competitive, and optimizing approaches are quite distinct, with potential 
advantages and disadvantages to each. This implies that no single approach is likely to 
be objectively better or worse than the others, particularly at the current state of scientific 
understanding.  There are both near-term and long-term opportunities with each type of 
approach, and the different approaches are likely to inform each other, e.g., as different 
levels of a hierarchy of complexity.  Furthermore, the way in which observations are 
used to inform each type of model is distinct: e.g., a given dataset such as the 
geographic distribution of a given plant trait may be used as a model input for a purely 
correlative approach, such as trait-mapping, and as a benchmark to test emergent 
model behavior in another approach, such as a trait-filtering model. 
 
 

2.3. Datasets to inform models representing diverse or dynamic plant traits  
 
Dynamic Global Vegetation Models that project future plant community composition and 
ecosystem function across the world are built on an underlying foundation of 
observational data. As described above, plant trait data and associated geographic, 
edaphic, and environmental conditions are needed to inform model initialization, 
parameterization, and validation at scales both global and local. Scientists have been 
observing the world around them for millennia, but the digital age provides 
unprecedented opportunity to relate what empiricists observe in the natural world to the 
numerical hypotheses encoded in models. A number of global plant trait databases have 
been developed in recent years, each with different goals (e.g., BAAD (Falster et al., 
2015), BettyDB (https://www.betydb.org/), BIEN (http://bien.nceas.ucsb.edu/bien/), 
FRED (http://roots.ornl.gov), TRY (www.try-db.org)). However, there are several 
challenges associated with interpreting and synthesizing plant trait data in way that is 
useful to inform models, and data are still lacking for many important processes and 
biomes.  
 
Available data 
The largest plant trait database in the world, the TRY database, contains 5.6 million 
plant trait records of from 100,000 species across the globe (Kattge et al., 2011). 
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However, the matrix of observations in TRY is more than 90% empty. Thus a major 
issue is whether the spatial and temporal coverage of available plant trait data can 
inform models operating at a global scale. The challenges faced by both current and 
future DGVMs are two-fold: (1) sparse observations of a given plant trait can preclude 
the estimation of trait values across the globe for model initialization and 
parameterization, and (2) a limited number of plant species for which two or more traits 
have been measured hinders estimates of trait-trait covariation necessary to inform 
competitive trait modeling approaches. These challenges can be addressed in part 
through statistical gap-filling methods, such as Bayesian hierarchical approaches, that 
can predict trait values to fill the missing data in the trait matrix across the globe (Schrodt 
et al. 2015). The predictive capacity of gap-filling trait values can be further improved by 
the incorporation of additional data on plant phylogeny, as well as trait-trait interactions 
and trait-environment relationships (Schrodt et al. 2015). Remote sensing data sets may 
prove particularly useful in this context, given a larger data coverage in space and time 
(Serbin et al. 2014).  
 
Models also face the challenge of potential mismatches between observations of plant 
traits in large databases and model needs. For example, models may need continuous 
rather than categorical trait values that allow the representation of processes at the 
larger-scale of a plant functional type or a grid cell, as well as relevant ancillary data and 
metadata on site, edaphic, and environmental conditions. Unfortunately, these 
characteristics are often lacking for many of the observations included in the large trait 
databases available for model use, which can hinder the interpretation of these data and 
their usefulness in informing model parameterization and processes. For example, 
accurate georeferencing is required for understanding trait-climate relationships, but only 
50% of data in TRY were georeferenced upon collection (Kattge et al. 2011). Moving 
forward, some of these challenges can be addressed in the way currently available 
observations are synthesized. For example, empiricists (and ultimately large plant trait 
databases) should include model-relevant metadata in their analyses, including the 
location and timing of trait data collection, but also the vegetation characteristics and 
edaphic and environmental conditions of the site. Furthermore, it would be most useful if 
these data were publically available in a single, publicly accessible data repository, or 
accessible via a data brokering portal. The release of observations to the broader 
community of empiricists and modelers can be stimulated by the development of 
improved agency data policies (e.g., U.S. DOE’s Office of Science Statement on Digital 
Data Management, http://science.energy.gov/funding-opportunities/digital-data-
management/). New model scaling methods can then be used to scale small-scale trait 
observations or processes to a larger temporal or spatial scale of land surface models, 
as can regional analyses of observations and syntheses of multiple experiments (Medlyn 
et al. 2016). At the same time, ongoing interactions among modelers, empiricists, and 
database managers can help to facilitate the collection of new model-inspired 
observations that help to fill some of the gaps in our understanding of plant traits across 
the globe. 
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Moving forward: Filling gaps in missing data  
The next generation of observations should focus on processes or biomes that are 
highly uncertain or sensitive in models. Model uncertainty quantification and variance 
decomposition assessments could help to drive the collection of new measurements on 
poorly-understood traits where uncertainty is driven by lack of data rather than by model 
sensitivity. Evidence thus far indicates that undersampled biomes such as the Arctic and 
Tropics are a particularly important focus for the next generation of observations, 
especially given the importance of plant traits to climate feedbacks in the Arctic (Myers-
Smith et al. 2015) and the high diversity of traits in tropical ecosystems (Negron-Juarez 
et al. 2015). Observations made at common sites by interdisciplinary teams that capture 
measurements of plant traits and trait-tradeoffs, relationships among traits and edaphic 
and environmental conditions, and relationships between traits and ecosystem process 
rates will be particularly useful.  
 
Uncertainty quantification is only practical for parameters and processes that are 
included in the current generation of models; however, observations of traits that might 
make models more ecologically useful in the future are also needed. Belowground plant 
traits, particularly the distribution and dynamics of fine roots, are a particularly large gap 
in our observations and understanding of the natural world and are rather coarsely 
represented in the current generation of terrestrial biosphere models (Warren et al. 
2015). However, the relationships between belowground plant traits and changing 
environmental conditions, as well as the linkages and tradeoffs among above- and 
belowground plant traits (Figure 3), will be necessary to inform the next generation of 
models using trait optimization and competitive approaches. To address this challenge, 
the Fine-Root Ecology Database (FRED; http://roots.ornl.gov) is being developed to fill 
gaps in our understanding and modeling of fine roots, and FRED will be submitted 
annually to the 
TRY database to 
facilitate above- 
and belowground 
linkages. 
However, FRED 
also indicates that 
more 
observations of 
fine root 
processes are 
needed across 
the globe. 
Furthermore, 
even physiological 
processes as 
well-understood 
as photosynthesis 

 
 
Figure 3. Variation in leaf, stem and fine-root traits among 
arctic plants growing on polygonal ground at the Barrow 
Environmental Observatory (BEO). L to R Eriophorum 
russeolum (sedge), Dupontia fisheri (grass), and Salix 
rotundifolia (shrub). Photo credit: Victoria Sloan.  
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may be poorly-resolved in some large-scale models, especially with regard to the 
acclimation of plant physiology to environmental change, on multiple time scales 
(Rogers et al. 2014). Improved understanding and modeling of these important aspects 
of plant physiology will have consequences for the predictive power of ESMs. 

 
 

 
2.4. Consequences of including diverse and dynamic plant traits in ESMs 

 
Much of the rationale for including dynamic plant traits in coupled models of the Earth 
system is to better project the ways in which ecosystems will respond to global change.  
Early ESMs that included dynamic plant distributions based on simple bioclimatic or PFT 
interaction criteria identified the potential for abrupt transitions, such as forest loss in the 
Amazon, to dramatically alter the pace of global climate change (Cox et al., 2000).  Such 
predictions may not have had a firm mechanistic basis, and a key goal in creating the 
next generation of ESMs with dynamic plant traits is to include both a more complete 
understanding of the possible ecosystem responses to global change as well as a more 
firm observational-based foundation for assessing the accuracy of these predictions.   
 
Ecosystem models as represented in ESMs have become more complex in time, both 
through a richer representation of mechanistic processes that govern ecosystem 
function, and through increased structural complexity such as disaggregating vegetation 
into more highly resolved classes of size, age, and trait values.  While such complexity 
may be required to accurately project key dynamics, it comes at the cost of requiring 
more robust metrics of model realism, more accurate assessments of initial conditions, 
and more finely-resolved parameterizations of processes that are not explicitly resolved 
(Luo et al., 2012).  
 
The differing model strategies such as correlative, competitive, and optimizing 
approaches as described above will require different approaches to initialization, 
parameterization and benchmarking against datasets.  Syntheses of trait observation 
data for testing against models must be aware of the assumptions used in a given 
approach, to avoid circularity in, for example, benchmarking a model against 
observations that were used to initialize or parameterize that model.  
 
Finally, a key unresolved question is whether including dynamic plant traits acts over all 
to increase or decrease the magnitude of climate feedbacks arising from the terrestrial 
biosphere.  The CMIP5 generation of ESMs predict that carbon feedbacks are almost 
entirely driven by leaf-level processes that govern productivity responses to global 
change (Koven et al., 2015); whereas next-generation models that achieve greater 
dynamism of traits via competitive mechanisms show that competitive processes exert a 
strong control (Ahlstrom et al., 2015; Friend et al., 2014). Observations across spatial 
gradients show a much greater decoupling of biomass from productivity, which is 
mediated by negative correlations between productivity and turnover time, both in soils 
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and biomass 
(Malhi et al., 
2004); these 
relationships may 
also be observed 
in the temporal 
response to global 
change (Brienen 
et al., 2015).  
Thus the current 
models, by 
focusing on the 
productivity 
response, may be 
effectively missing 
compensatory 
responses that 
will dampen 
carbon responses to changing climate and CO2 (Delbart et al., 2010).  At the same time, 
the emergence of novel climate states, with effects that may not be well understood until 
they appear, may allow for destabilizing responses.  It is certainly possible that inclusion 
of more complexity of plant trait dynamics in ESMs may increase rather than decrease 
the confidence intervals of future climate feedbacks, by more accurately including the 
wider range of possibilities that actually exist in the Earth system than the simplistic 
models currently in use permit. 
 

3. Outcomes and priorities 
 
The workshop discussions revealed priorities for future work to improve the use of plant 
traits in ESMs. Participants called for better understanding of which traits are conserved 
vs. responsive to a changing environment. Additionally, they identified a need to 
understand and represent (i) both trait correlations driven by physical constraints and 
those reflecting strategic plant trade-offs, and (ii) how plant traits mechanistically drive 
plant, community and ecosystem processes. Participants agreed that pursuit of multiple 
distinct modeling approaches will yield more rapid advances than a single approach at 
this early stage (Figure 2). Participants identified numerous gaps in the data available to 
inform new models. Data are sparse for belowground traits relevant to plant water and 
nutrient acquisition, and for undersampled but climatically important regions, such as 
biome transition zones, arctic tundra, and tropical forests (Figure 4), where trait diversity 
is highest. Participants seek to apply the tools of “big data” to assemble and interpret 
trait observations for the modeling community. Analytically tractable models and 
ensembles of stochastic models both may be required to understand the emergent 
behavior of real ecosystems. 
 

 
 
Figure 4. Tropical forest canopy near Manaus, Brazil. Credit: 
Jeff Chambers  
Environmental Observatory (BEO). L to R Eriophorum 
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A series of next steps and science needs are listed below. Some of these should be 
easy to address in the near term, including the application of statistical approaches that 
have been well developed in other fields to fill in gaps in existing databases, and in the 
upscaling of plant traits based on already-known trait-environment relationships.  Others 
are longer-term, including the continued development of mechanistically and structurally 
complex ecosystem models in ESMs. Together, these steps will help the science 
community address the critical questions of how the wide diversity of plant traits will 
govern the terrestrial responses and feedbacks to global change. 
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4. Key Science Needs 
 
● Data and observational needs 

○ Methods for filling gaps in trait databases 
○ Methods for scaling trait data from individual to species to community 

level 
○ Synthesis and curation of plant trait observations into freely-available 

databases 
○ Trait-trait correlations across measured environmental gradients at 

multiple scales 
○ Trait measurements from climatically important ecosystems, e.g. high 

latitude, tropical, and semi-arid ecosystems 
○ Better observations of carbon allocation, hydraulic, and plant life history 

traits 
○ Remote-sensing approaches to linking site-scale measurements of traits 

to broader spatial scales 
○ Better belowground trait measurements; understanding of relationships 

between above- and belowground plant traits; and traits that govern plant 
microbiomes 

○ Better understanding of the degree of plasticity in trait values within 
individuals, populations, or species 

○ Experiments to test predictions of plant traits and trait distributions in 
novel climates 

○ Better linkages among observations of plant traits, demography, and 
ecosystem function 

● Model development and testing needs 
○ Improved workflows for testing models against plant trait information 
○ Improved process resolution for mechanisms that determine plant trait 

distributions in ESMs 
○ Development of models across a hierarchy of complexity levels for testing 

approaches to predicting plant traits via correlative, competitive, and 
optimizing approaches 

○ Improved methods to attribute the causal tradeoff mechanisms behind 
observed trait correlations 

○ Improved representation of disturbance processes in ESMs 
○ Better incorporation of underrepresented processes in ESMs: e.g., 

belowground plant and microbiome processes, carbon allocation, 
hydraulic processes, plant life-history strategies 

○ Better model representation of processes of community assembly in 
emerging novel climates 

○ Better model representation of environmental heterogeneity to allow for 
improved coexistence of plant diversity 

○ Better understanding of the implications of different choices in how PFTs 
are defined in ESMs 
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