Hydrometeorological sensitivities of net ecosystem carbon dioxide and methane exchange of an Amazonian palm swamp peatland

Tim Griffis1*, Tyler Roman2, Fenghui Yuan3, Jeff Wood4, Julian Deventer1,4, Lizardo Fachin5, Jon Rengifo5, Dennis Del Castillo6, Erik Lilleskov6, Randy Kolka2, Rod Chimner7, Craig Wayson8, Kristell Hergoualc’h9, John Baker10, Hinsby Cadillo-Quiroz11 and Dan Ricciuto12

1Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN, USA; 2USDA Forest Service – Northern Research Station Grand Rapids, MN, USA; 3School of Natural Resources, University of Missouri, Columbia, MO, USA; 4University of Goettingen, Bioclimatology, Goettingen, Germany; 5Instituto de Investigaciones de la Amazonia Peruana, Iquitos, Peru; 6USDA Forest Service, Houghton, Michigan, USA; 7Michigan Technological University, Houghton, Michigan, USA; 8USDA Forest Service, International Programs, Washington, D.C., USA; 9Center for International Forest Research, Jalan, Situgede, Indonesia 10USDA-ARS and University of Minnesota, Saint Paul, MN, USA 11Arizona State University, Tempe, AZ, USA; 12Oak Ridge National Lab, TN, USA.

Contact: (timgriffis@umn.edu)
Project Lead Principal Investigator (PI): Tim Griffis
BER Program: Terrestrial Ecosystem Sciences (TES)
Project: University Project Award Number DE-SC0020167
Project Website: https://biometeorology.umn.edu/research
Project Abstract:
Tropical peatlands are a major, but understudied, biophysical feedback factor on the atmospheric greenhouse effect. The largest expanses of tropical peatlands are located in lowland areas of Southeast Asia and the Amazon basin. The Loreto Region of Amazonian Peru contains ~63,000 km² of peatlands. However, little is known about the biogeochemistry of these peatlands, and in particular, the cycling of carbon dioxide (CO₂) and methane (CH₄), and their responses to hydrometeorological forcings. To address these knowledge gaps, we established an eddy covariance (EC) flux tower in a natural palm (Mauritia flexuosa L.f.) swamp peatland near Iquitos, Peru. Here, we report ecosystem-scale CO₂ and CH₄ flux observations for this Amazonian palm swamp peatland over a two-year period in relation to hydrometeorological forcings. Seasonal and short-term variations in hydrometeorological forcing had a strong effect on CO₂ and CH₄ fluxes. High air temperature and vapor pressure deficit (VPD) exerted an important limitation on photosynthesis during the dry season, while latent heat flux appeared to be insensitive to these climate drivers. Evidence from light-response analyses and flux partitioning support that photosynthetic activity was downregulated during dry conditions, while ecosystem respiration (RE) was either inhibited or enhanced depending on water table position. The cumulative net ecosystem CO₂ exchange indicated that the peatland was a significant CO₂ sink ranging from −465 (−279 to −651) g C m⁻² y⁻¹ in 2018 to −462 (−277 to −647) g C m⁻² y⁻¹ in 2019. The forest was a CH₄ source of 22 (20 to 24) g C m⁻² y⁻¹, similar in magnitude to other tropical peatlands and larger than boreal and arctic peatlands. These measurements have been used to help parameterize the Energy Exascale Earth System Model (E3SM) land surface component (ELM). Initial modeling results demonstrate that ELM can capture the seasonal and diel cycles of CO₂ and CH₄ fluxes. Further, we identified that the photosynthetic response at this tropical peatland site is very sensitive to air temperature, while CH₄ production is more sensitive to water condition, which can significantly influence its carbon budget. Ongoing model analyses are exploring potential biophysical feedback processes associated with changes in hydrometeorology for this region.