Peatlands cover only 3% of Earth’s land surface but contain about 30% of the global soil carbon pool. Peat deposits originated from higher plants and moss-generated litter. Because of cold, oxygen-poor conditions, the carbon contained in northern peatlands has accumulated for thousands of years. Under current warming trends and consistent with climate projections, such accumulations of carbon may be vulnerable to further decomposition or mineralization. If global temperatures warm as projected at higher latitudes, these peatlands could release large amounts of greenhouse gases such as carbon dioxide (CO$_2$) and methane (CH$_4$) that could accelerate global warming. The ability to predict or simulate the fate of the stored carbon in response to environmental disruption remains hampered by a limited understanding of the controls of carbon turnover and the composition and functioning of peatland ecosystems.

To identify and quantify these critical environmental response mechanisms, the Environmental System Science (ESS) program within the Department of Energy’s (DOE) Biological and Environmental Research (BER) program is supporting a whole-ecosystem experiment in an ombrotrophic bog (i.e., a raised bog that receives all water and nutrients from direct precipitation) located in the Marcell Experimental Forest of northern Minnesota. The Spruce and Peatland Responses Under Changing Environments (SPRUCE) experiment project, led by Oak Ridge National Laboratory (ORNL), enables the assessment of ecological responses across multiple spatial scales—including microbial communities, moss populations, various higher plant types, and some insect groups. The project is evaluating a wide range of increased temperatures and levels of elevated atmospheric CO$_2$ concentrations. Direct and indirect effects of the experimental perturbations are being tracked and analyzed over a decade. This comprehensive suite of spruce-peatland process studies and observations is being linked to model development and application requirements for improving process representation, calibrating models, and evaluating model predictions for boreal ecosystems. SPRUCE is a cooperative joint venture by scientists from DOE national laboratories, the U.S. Department of Agriculture’s (USDA) Forest Service, and universities.

Warming and Carbon Dioxide Treatments

By 2100, future terrestrial environments are projected to be 4°C to 8°C warmer than today, depending on the latitude. Mean deep soil (>1 m) temperatures will also rise with a warming climate. A series of large, open-topped aboveground enclosures and a method for warming soils from the surface down to a minimum of 2 m were installed in the peatland to simulate various levels of warming and CO$_2$ exposure at the whole-ecosystem scale. Soil and air temperatures within these enclosures cover multiple levels of warming from ambient to +9°C. Simultaneously, atmospheric CO$_2$ levels within half of the enclosures are elevated up to 800 to 900 parts per million to reflect current expectations for levels that could be associated with end-of-century temperatures.

The experimental system provides a unique platform for testing the mechanisms controlling the vulnerability of organisms, biogeochemical processes, and ecosystem functions to important environmental change variables (e.g., thresholds of organisms to decline or mortality, limitations to regeneration, biogeochemical limitations to productivity, and the cycling and release of CO$_2$ and CH$_4$ to the atmosphere). The ultimate goal is to determine the levels of warming at which...
Ecosystems will reach a critical change in temperature and what CO₂ levels will push them into a new state (i.e., altered community composition and capacity to store carbon). Deep peatland heating was initiated in June 2014 to independently test the impacts of warming on the bog's ancient deep carbon stocks ahead of the full whole-ecosystem warming that began in June 2015.

Connecting Observations to Models for Improved Earth System Predictions

New modeling approaches for peatlands are needed to incorporate the complex relationships among warming, drying, mineralization processes, and vegetation responses associated with environmental changes. The experimental data generated by SPRUCE are providing quantitative evidence of the effects of elevated temperatures and CO₂ on northern peatland ecosystems and the vast carbon stores associated with the hydrology and biogeochemistry of these globally widespread landscapes. These data have led to key improvements in how biogeochemistry models (and further community models) represent the temperature dependence of carbon losses as CO₂ and CH₄. Models have also improved the extent to which they might be counterbalanced by enhanced net primary production that is driven by a longer growing season, nutrient enrichment, and elevated atmospheric CO₂ levels.

Research Platform for the Scientific Community

The core suite of SPRUCE research is being pursued by scientists at ORNL and the USDA's Forest Service. Collaborations with over 30 universities have been established to leverage the project. Also welcomed are new initiatives consistent with the design, science mission, spatial constraints, and integrity of the experiment on the sensitive bog ecosystem. Collaboration opportunities include but are not limited to:

- Canopy albedo changes
- Remote sensing of canopy function
- Microscale LIDAR
- Cold hardness
- Trace gas emissions
- Herbivory
- Food web linkages
- Pests and pathogens (host defenses versus pathogen virulence)

Picea-Sphagnum Bog. Picea mariana, or black spruce, and Sphagnum, a genus of peat mosses, are the dominant overstory and groundcover, respectively, of the boreal peatland where SPRUCE is being conducted. The bog contains deep peat deposits perched several meters above the regional groundwater table.

Whole-Ecosystem Warming Method. Experimental enclosures were built to provide warming from the treetops to the deep soil (–2 m to –3 m). The open-topped enclosures encompass 12-m diameter internal study areas, with 8-m tall side walls. A subsurface corral isolates the belowground peat environment for measures of local hydrologic conditions. Aboveground warming enclosures became fully operational in 2015. **Inset:** Closeup of enclosure.

Environmental Monitoring. Automated ground-level measurements of carbon dioxide and methane are assessed from 0.5-m diameter in situ collars left in the experimental plots for seasonal and treatment response evaluations (left). SPRUCE experimental plot showing the environmental monitoring mast and visible infrastructure for belowground gas flux and pore water measurements prior to the addition of the aboveground enclosure (right).

Contacts and Websites

BER ESS Program Managers
Daniel Stover, daniel.stover@science.doe.gov
Brian Benscoter, Gil Bohrer, Paul Bayer

Principal Investigator
Paul J. Hanson, hansonpj@ornl.gov

SPRUCE
mnspruce.ornl.gov

Environmental System Science Program
ess.science.energy.gov

Earth and Environmental Systems Sciences Division
science.osti.gov/ber/research/eessd

DOE Biological and Environmental Research Program
science.osti.gov/ber

DOE Office of Science
science.osti.gov

U.S. Department of Energy
energy.gov

October 2023