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Foreword

This report derives from the March 2023 Artificial Intelligence for the Methane Cycle (AI4CH4) virtual work-
shop, co-organized by staff from the Earth and Environmental Systems Sciences Division (EESSD), within 
the U.S. Department of Energy Biological and Environmental Research program (BER), and computational 

ecologist Dr. Pamela Weisenhorn from Argonne National Laboratory. AI4CH4 provides a follow-up to the 2021 
Artificial Intelligence for Earth System Predictability workshop series (ai4esp.org) co-organized by two DOE 
programs—BER and Advanced Scientific Computing Research (ASCR).

The purpose of AI4CH4 was to more clearly demonstrate that artificial intelligence and machine learning (AI/ML) 
approaches could advance scientific understanding associated with one aspect of the global Earth system—the 
methane cycle. The workshop identified opportunities and challenges associated with better understanding the 
methane cycle as well as methane emission challenges across a range of spatial and temporal scales, from genomes 
to Earth system scales. AI4CH4 also identified general AI/ML infrastructure challenges and social and cultural 
shifts that might be needed within methane science, data analytics, and modeling communities to fully realize the 
benefits of AI/ML approaches. 

ai4esp.org
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Rapid advances in artificial intelligence (AI), 
machine learning (ML), and related advanced 
statistical approaches stand to accelerate progress 

toward scientific grand challenge goals by shifting the 
scientific research paradigm. The U.S. Department 
of Energy’s (DOE) Biological and Environmental 
Research program (BER) is exploring opportuni-
ties and challenges in this emerging research area by 
sponsoring research and workshops, including the 
Artificial Intelligence for the Methane Cycle work-
shop (AI4CH4) held over four virtual half days in 
March 2023. 

AI is defined as any approach for building models 
from data to advance research objectives, alone or in 
conjunction with simulation, through techniques that 
enable computers to identify patterns, including ML, 
deep learning, and large language models. Developing 
and applying AI approaches in BER research can 
strengthen connections among datasets and individual 
steps of the integrated modeling and experimental 
(ModEx) framework (ess.science.energy.gov/modex), 
which decreases the time from scientific discovery to 
incorporation into predictive models. Furthermore, 
more rapid data assimilation and model development 
can provide greater focus in the design of future 
research studies and sampling campaigns leading to 
greater efficiency in creating novel insights. 

Despite interest in the methane cycle from the Earth 
science community over the past decades, large 
uncertainties persist in global model estimates of land- 
atmosphere methane exchange. Methane is the second 
largest contributor to global warming, accounting for 
20% of warming from greenhouse gasses and exhibiting 
a warming potential 27 to 30 times that of carbon diox-
ide over a 100-year time horizon. Model uncertainties 
reflect high variability of processes driving emissions, 
relative sparsity of process- relevant data, different mea-
surement approaches and frequencies across the wide 
range of scales at which methane cycling is studied, 
and uncertainty in the measurements themselves. In 

addition, traditional numerical models insufficiently 
capture the multiscale nature of the methane cycle. A 
comprehensive solution demands the capability to find, 
link, leverage, and gap-fill existing datasets; incorporate 
these data into multiscale models; and evaluate the 
models against benchmark data.

The AI4CH4 workshop focused on research needs and 
opportunities for applying AI in the specific context of 
the methane cycle. Workshop goals included identify-
ing challenges and opportunities in data and modeling 
for the methane cycle and charting potential paths 
toward incorporating AI into future BER- supported 
research implementing the ModEx framework. 
Approximately 100 researchers from academia, indus-
try, DOE, and other agencies contributed to the virtual 
workshop by submitting white papers or engaging in 
discussion sessions (see Appendix A: Agenda, p. 57; 
Appendix B: Participants, p. 58; and Appendix C: 
White Papers, p. 60). 

Topical sessions focused on data and infrastructure 
needs for advancing predictive understanding of 
methane cycle components, with an emphasis on 
addressing the lack of closure between bottom-up and 
top-down methane emissions models, and the unique 
challenges posed by high spatiotemporal heterogeneity 
in individual methane cycling processes. 

The AI4CH4 workshop identified several key opportu-
nities for AI application to methane cycle research:

1.  Enhance observation and experimentation. 
In the field, sensor data can be assimilated into 
AI models, which are considerably faster and 
less computationally intensive than traditional 
models. This speed and energy efficiency enables 
real-time automated refinement of observation 
location and frequency based on sensor data and 
model output. Improved data collection leads 
to improved model resolution for processes 
with high spatiotemporal heterogeneity (e.g., 
methane ebullition). Similarly, autonomous 

Executive Summary

https://ess.science.energy.gov/modex/
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self-driving laboratories can potentially perform 
laboratory-based experimentation to evaluate 
AI model output. Output assimilated from prior 
experiments can be used to autonomously deter-
mine future experiments. 

2.  Add contextual data to existing datasets. 
Studies examining various aspects of the methane 
cycle have been conducted at many sites for 
decades. However, leveraging these existing data-
sets may require adding data or metadata (e.g., 
metageno mic data) that was not collected as part 
of the original study. AI-based data interpolation 
approaches, including generative adversarial 
networks, may be used to complete missing data. 
This approach increases the ability to perform 
data integration from disparate sources and 
improves data reusability, especially for purposes 
unanticipated at the time of sample, data, and 
metadata collection.

3.  Expand the findability and usability of data. 
Application of AI can improve the exchange 
of data and model outputs, especially across 
scientific domains. Cross-domain exchange is 
necessary since methane cycle studies range 
from physiological investigations of microbial 
taxa to site-level flux measurements to global 
modeling efforts. However, the ability to leverage 
knowledge gained in one area to advance other 
efforts currently faces limitations. Large language 
models and retrieval-augmented generation can 
improve and automate ontology generation, 
and thereby improve the ability to find relevant 
data. The ability to use natural language queries 
can make data more findable and accessible to 
a broader range of users, including expert users 
outside the domain of the data generator.

4.  Optimize sampling strategies and experimen-
tal design. The computational efficiency of AI 
methods enables rapid data assimilation which 
can be leveraged to help minimize parametric 
and structural uncertainty of models. It enables 
robust global sensitivity analysis, which can iden-
tify critical data needs and drive experimental 
design and sampling campaigns. Ultimately, these 

data can then be incorporated into local, regional, 
and global methane cycle models and thereby sig-
nificantly improve model performance.

5.  Develop and support scientific workflows. 
Progress toward AI and ML application in meth-
ane cycle research is slowed by computational, 
communication, ownership, and provenance chal-
lenges in developing, supporting, and maintaining 
scientific workflows that can integrate across the 
continuum from high-performance computing 
to cloud to edge compute capabilities. Scientific 
workflow progress could also be achieved by 
employing fully autonomous and self-driving 
sensing and experimental systems.

Application of AI and ML approaches across science 
domains within BER’s Earth and Environmental 
Systems Sciences Division and Biological Systems 
Science Division offers exciting opportunities for 
accelerating progress towards BER’s scientific grand 
challenge goals. Maximizing the application of AI and 
ML to gap-fill and link existing datasets can enable 
both experimentalists and modelers to more com-
pletely leverage existing knowledge about the methane 
cycle. Development and coupling of surrogate and 
hybrid AI models can improve the accuracy and effi-
ciency of processes modeled over broad spatial and 
temporal scales, which remains challenging with tra-
ditional numerical modeling approaches. Particularly 
relevant to methane cycling and BER interests, AI and 
ML approaches could significantly advance the incor-
poration of individual microbial processes, such as 
methanogenesis and methanotrophy, into larger-scale 
models (BERAC 2017). 

While workshop discussions examined challenges and 
opportunities in data and modeling for AI application 
in a methane cycle context, workshop participants 
also identified and discussed more general needs to 
support increased use of AI, including cultural shifts 
and computing infrastructure. The development of a 
community of practice and supporting infrastructure 
capabilities that enable increased application of AI to 
both data and modeling challenges promises benefits 
beyond methane cycling that could advance other 
BER-relevant scientific grand challenges.
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T he development of artificial intelligence (AI) has created new opportunities for advancing human under-
standing. AI modeling approaches possess an inherent ability to capture complex patterns in data spanning 
a vast spectrum of spatiotemporal measurement scales. Therefore, applying AI to diverse scientific research 

topics has the potential to rapidly improve predictions of Earth systems behavior. Such approaches can be espe-
cially effective for complex systems with numerous interacting components and nonlinear dynamics that are chal-
lenging to predict based on traditional mechanistic, process-based physical measurements and modeling. 

This report, focusing on AI approaches in methane cycle research, defines AI as any approach for building models 
from data to advance research objectives, alone or in conjunction with simulation, using techniques (e.g., machine 
learning and deep learning) that enable computers to identify patterns following the scope set forth in DOE’s AI 
for Science report (U.S. DOE 2020). Machine learning (ML) is defined as a subset of AI involving algorithms and 
statistical models where model performance can be improved over time through increased experience and data 
analysis. 

AI and ML approaches are currently being developed and applied in methane cycle research. Although develop-
ments in generative AI, defined as techniques which can create text, images, data, and software by generalizing 
from patterns learned from large amounts of data (U.S. DOE 2020), have occurred rapidly, its applications in 
methane research are still limited. In general, biological applications of these approaches have advanced more 
rapidly than environmental and Earth science applications, in part due to the higher adoption of standardized data 
formats and conventions, such as those developed by the Genomic Standards Consortium (Yilmaz et al. 2011). 

1 | Introduction

Aerial view of a Spruce and Peatland Responses Under Changing Environments (SPRUCE) site. [Courtesy Oak Ridge National Laboratory]
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New data-driven AI approaches present challenges, 
including needing to develop explainable models to 
advance conceptual understanding and to characterize 

uncertainty in model predictions (see “Types of AI” 
sidebar, p. 3). While traditional modeling approaches 
attempt to capture all processes in a single model, 

Classifier (see Ch. 5)

An algorithm that automatically orders or categorizes 
data into one or more groups or classes.

Synonym: classification model 

Foundation Model (see Ch. 1, 5, 6, 8)

An AI model, often comprising trillions of parameters, 
that is trained on a broad range of data such that it 
can be applied across a wide range of use cases. Some 
foundation models can incorporate new informa-
tion into their existing knowledgebase with minimal 
retraining, which is vital for adapting to the evolving 
nature of datasets in real-world scenarios.  

Generative Adversarial Network (GAN) 
(see Executive Summary and Ch. 2)

An unsupervised machine learning model in which 
two neural networks compete to generate increasingly 
authentic new data from a training dataset using deep 
learning methods. 

Large Language Model (LLM)  
(see Executive Summary and Ch. 1, 4, 6, 8)

A very large deep learning model, and a type of 
artificial neural network, pre-trained on vast amounts 
of data and notable for its ability to achieve general- 
purpose language outputs and generation.

Long Short-Term Memory Network (LSTM) 
(see Ch. 1, 2, 4, 5)

A type of bi-directional artificial neural network, or 
recurrent neural network, which allows the output 
from some nodes to affect subsequent input to the 
same nodes as opposed to information flowing 
between layers in a forward-only direction. LSTM net-
works can reveal the importance of driving variables 
and their time dependencies in long time-series data.

Neural Network (NN) (see Ch. 1, 2, 3, 5)

A method in artificial intelligence that teaches comput-
ers to process data. Computers use NNs to learn from 
their mistakes and continuously improve accuracy of 
data analysis. 

Examples include artificial neural networks, convolu-
tional neural networks, and deep neural networks.

 • Artificial Neural Network (ANN)  
 (see Ch. 1, 3, 5)
  A branch of machine learning used for solving arti-

ficial intelligence problems such as speech recogni-
tion, image analysis, and adaptive control. ANNs lie 
at the heart of deep learning algorithms.

 Synonyms: simulated neural networks, neural nets

 • Convolutional Neural Network (CNN)  
 (see Ch. 5)

  Often utilized for classification and computer vision 
tasks, CNNs are distinguished from other NNs by 
their superior performance with image, speech, 
and audio signal inputs. CNNs provide a scalable 
approach to image classification and object recogni-
tion tasks.

 • Deep Neural Network (DNN) (see Ch. 5)

  An ANN with multiple layers, each with a set of 
artificial neurons linked together, between the input 
and output layers. DNNs can theoretically map any 
input type to any output type, but they require many 
more examples of training data compared with other 
machine learning methods. 

 Synonym: deep learning network

Artificial Intelligence Approaches 
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hybrid models reduce computational cost by incorpo-
rating data-driven models for specific processes, often 
occurring at different temporal or spatial scales. These 
data-driven models may effectively predict system 
behavior even before a complete scientific under-
standing of the modeled process is developed. As with 
traditional process-based modeling approaches, AI and 
hybrid models can generate new scientific insights that 
provide a basis for additional laboratory and field exper-
imentation and manipulation. Further consideration 
is needed to explore how to best leverage the strengths 
and address the limitations of AI and hybrid modeling 
approaches within an integrated modeling and experi-
mental (ModEx) framework to advance research.  

Research within the Biological and Environmental 
Research program’s (BER) Environmental System 
Science program, for example, is guided by the 
ModEx framework (ess.science.energy.gov/modex). 
The ModEx framework integrates hypothesis- driven 
research (i.e., observations, experiments, and mea-
surements) with modeling research that simulates the 
same processes. This integration supports incorpo-
ration of state-of-the-science research findings into 
modeling efforts, which in turn can be used to guide 
future research questions and directions. Developing 
and applying diverse AI approaches has the potential 
to impact each step in the ModEx cycle (see “Adapting 
the ModEx Framework to AI Models” sidebar, p. 4). 

Types of AI
Anomaly Detection (see Ch. 4, 8)

The process of identifying data points, entities, or 
events that deviate from an expected range.

Synonyms: denoising, outlier detection 

Causality-Guided Machine Learning  
(see Ch. 2)

Using experimental and observational data to 
determine causal relationships between variables, 
then using this information to enable predictive 
machine learning models to provide insights into the 
relationships.

Synonyms: causal machine learning, knowledge- 
guided machine learning

Explainable Artificial Intelligence  
(see Ch. 1)

A collection of tools and frameworks that enable 
understanding and interpretation of machine learning 
model predictions. 

Ensemble Models (see Ch. 3)
A collection of multiple individual models to produce a 
final prediction. These individual models can be of the 
same type (homogeneous ensemble) or different types 
(heterogeneous ensemble). Ensemble methods are 
widely used in machine learning and artificial intelli-
gence because they often improve predictive perfor-
mance compared to using a single model.

Supervised vs Unsupervised Learning 
(see Ch. 1)
Supervised learning is a machine learning model that 
trains on labeled datasets. These datasets “supervise” 
algorithms to classify data or predict outcomes. The 
labeled inputs and outputs enable the model to 
improve its accuracy over time. In contrast, unsuper-
vised learning analyzes and clusters unlabeled datasets. 
Supervised models typically display higher accuracy 
but require work to label the data in advance. 

Surrogate Models (see Ch. 1, 2, 4, 5, 6, 8)
Simplified approximations of more complex, higher- 
order mathematical models that may have reduced 
accuracy but are computationally faster and cheaper to 
evaluate.

Synonyms: emulators, metamodels

ess.science.energy.gov/modex
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Artificial intelligence will accelerate work across all six stages of the model-experiment (ModEx) cycle: 

•  Hypotheses or Questions: (a) supplementing 
contextual metadata for existing datasets to leverage 
more data in developing hypotheses; (b) expanding 
data findability and usability. (See Ch. 2, 7)

•  Observations, Experiments, Discovery: (a) pairing 
autonomous sensor systems with edge computing 
to quickly refine sampling location and frequency 
and improve process resolution (e.g., methane 
ebullition) with high spatiotemporal heterogeneity; 
(b) optimizing AI-driven sampling strategies and 
experimental design. (See Ch. 3)

•  Process or Systems Data: (a) expanding data find-
ability and usability; (b) ensuring quality assurance 
and control; (c) Improving data value through classi-
fication, outlier detection, and clustering, such as by 
integrating imaging data (e.g., computed tomog-
raphy and neutron tomography) with geochemical 
flux data.  (See Ch. 4)

•  Conceptual Models: (a) connecting ontologies from 
different domains; (b) identifying rough contours of 
new interactions. (See Ch. 2)

•  Process and Systems Modeling: (a) advancing 
Earth system models through surrogate and hybrid 
modeling approaches, especially with difficult-to- 
integrate measurements across scales; (b) param-
eterizing and reducing uncertainties in bottom-up 
process models. (See Ch.5)

•  Model Evaluation and Interpretation: (a) assim-
ilating data, analyzing sensitivity, and quantifying 
uncertainty, such as with surrogate models and 
hybrid surrogate/physics models; (b) identifying/
characterizing model–measurement deviations.   
(See Ch. 6) 

Adapting the ModEx Framework to AI Models
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A strengthened connection between ModEx and data 
collection, management, and use requires reimagining 
the data lifecycle and how the scientific community 
captures and shares data. This is increasingly important 
considering the need to generate large and high-quality 
datasets for AI model development, such as foundation 
models and large language models. 

Exploring AI for Energy 
and Environmental Science 
Recognizing the potential for a paradigm shift in scien-
tific discovery and prediction, DOE held a 17- session 
virtual workshop series, Artificial Intelligence for 
Earth System Predictability (AI4ESP), from October 
to December 2021 (U.S. DOE 2022). The workshop 
was jointly sponsored by BER’s Earth and Environ-
mental Systems Sciences Division (EESSD) and the 
Advanced Scientific Computing Research (ASCR) 
program within the DOE Office of Science. The work-
shop’s goal was to pursue a shared agenda of applying 
advanced statistical approaches and AI to rapidly 
improve Earth systems predictability at spatial scales 
ranging from microbes through ecosystems to the 
globe, and at temporal scales spanning minutes to cen-
turies. AI approaches produce models with improved 
abilities to resolve complex and nonlinear systems, 
meeting an increasing need to quickly make and refine 
high- resolution predictions that provide actionable 
information. Topics discussed throughout the work-
shop included (1) capturing heterogeneity in relevant 
variables and processes, (2) overcoming the difficulty 
associated with observing and predicting extreme 
events, (3) managing and analyzing immense volumes 
of data across a variety of ecosystems, and (4) launch-
ing a major effort to identify robust, interdisciplinary 
scientific approaches that integrate human activities 
(U.S. DOE 2022). 

The AI4ESP workshop highlighted needs for:

·  Large, curated datasets for model training. 

· Incorporating AI to enhance observations.

·  New mathematical approaches tailored to sparse 
data and extreme events.

·  Novel approaches that address interpretability and 
potential physical inconsistencies of traditional 
ML model outcomes, driving the need for hybrid 
models.

·  Innovative and consistent approaches to repre-
senting model uncertainties and trustworthiness.

·  Software infrastructure to support hybrid model 
components across major Earth and environmen-
tal system science codes.

·  Efficient and interoperable frameworks and archi-
tectures that provide access to data and model 
resources across organizations (U.S. DOE 2022).

Specifically, the workshop recognized a need for a 
supporting framework to lower community-wide 
barriers to access and bridge domain-specific needs 
for data generation, standards, synthesis, and model 
development. 

Another workshop, Artificial Intelligence and 
Machine Learning for Bioenergy Research (U.S. DOE 
2023) was held jointly by BER’s Biological Systems 
Science Division (BSSD) and the DOE Bioenergy 
Technologies Office (BETO) in August 2022. This 
workshop focused on bioenergy research and using 
data-driven approaches in parallel with traditional 
hypothesis-driven approaches to accelerate design 
and optimization of biological systems and processes 
for biotechnology innovation. The workshop spanned 
BSSD-funded research from enzymes to interact-
ing biological systems and particularly assessed the 
potential to advance biological understanding and 
engineering capabilities through development of 
AI/ML-driven autonomous laboratory systems. It 
highlighted biosystems design requirements for devel-
opment of data and computational infrastructure.

 Three critical needs and opportunities were identified: 
·  Availability of robust, high-quality data with 

complete metadata.

·  Development of improved or novel algorithms 
to meet the specific needs of the biotechnology 
community. 

·  Further development and use of laboratory auto-
mation approaches.
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Methane: A Crosscutting 
Research Opportunity
Building off the momentum of previous workshops, 
a follow-on workshop, Artificial Intelligence for the 
Methane Cycle (AI4CH4), was held over four virtual 
half days in March 2023. The workshop, detailed in 
this report, focused on unique needs and opportuni-
ties arising from using AI models to advance under-
standing of the methane cycle at scales from genomes 
to the global Earth system.

The extent to which research questions discussed in 
the workshop intersect with BER priorities is well- 
captured by the BER Advisory Committee’s grand 
challenge in microbial to Earth system pathways: 
“Define the levels of biological organization most 
relevant to scaling from single cells to ecosystems and 
global cycles; capture how that organization varies in 
time and space; and identify critical interactions that 
dictate the rates of carbon, nutrient, and energy trans-
formation in different environments” (BERAC 2017). 
In addition, methane research touches on several grand 
challenges outlined in the EESSD Strategic Plan for 
2018 to 2023 (U.S. DOE 2018), including: 

·  Biogeochemistry. Advance a robust, predictive 
understanding of coupled biogeochemical pro-
cesses and cycles across spatial and temporal 
scales by investigating natural and anthropogenic 
interactions and feedbacks and their associated 
uncertainties within Earth and environmental 
systems.

·  Drivers and Responses in the Earth System. 
Advance next-generation understanding of Earth 
system drivers and their effects on the integrated 
Earth-energy-human system.

·  Data–Model Integration. Develop a broad range 
of interconnected infrastructure capabilities and 
tools that support the integration and manage-
ment of models, experiments, and observations 
across a hierarchy of scales and complexity to 
address EESSD scientific grand challenges.

One established research thrust within BER’s funded 
programs is to develop a predictive understanding of 
the global carbon cycle. The cycle consists of carbon 

stocks and fluxes that interact across the atmosphere, 
biosphere, lithosphere, and ocean, impacting both bio-
logical systems and climate. Application of AI-based 
approaches can accelerate predictive understanding 
of the carbon cycle by improving identification of 
complex patterns in sparse datasets and reducing 
computational challenges associated with modeling 
of organisms and processes across markedly different 
spatial and temporal scales. As an important com-
ponent of the carbon cycle, the methane cycle is an 
ideal case study to explore the opportunities and 
challenges in applying AI because its biology is fairly 
well- understood and because of its outsized impact on 
climate feedbacks. 

Natural methane emissions are strongly linked to spe-
cific groups of microorganisms, a subset of which are 
well-studied, and methane release is further regulated 
by microbe–microbe and microbe–plant interac-
tions. Many physicochemical conditions, including 
oxidation- reduction (redox) potential, carbon sub-
strate availability, and alternative electron acceptor 
availability, influence both methane production and 
consumption. Ebullition and the physical conditions 
that favor it can influence methane release from 
flooded soils and sediments to the atmosphere due to 
methane’s low water solubility. 

Once released into the atmosphere, methane is a 
greenhouse gas with 27 to 30 times the radiative 
forcing of carbon dioxide on a 100-year time horizon 
(IPCC 2021), resulting in larger-scale feedbacks to the 
climate system. Methane cycling has been of intense 
interest to the Earth science community. Despite this 
interest and body of knowledge, large uncertainties 
persist in global model estimates of land-atmosphere 

As an important component of the 
carbon cycle, the methane cycle is 
an ideal case study to explore the 
opportunities and challenges in 

applying AI.
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methane exchange (Saunois et al. 2020). These uncer-
tainties are partly due to the high spatial and temporal 
variability of methane emissions (Bousquet et al. 
2006; Rosentreter et al. 2021). This variability has 
many causes:

·  Physiologic potential and environmental sensitiv-
ity of microorganisms.

·  Significance of microbe–microbe and plant–
microbe interactions to methane production, 
consumption, transport, and release.

·  Importance of abiotic processes, including pore 
structure, in mediating methane release.

· Ecological disturbances or perturbations. 

These uncertainties in land-atmosphere methane 
exchange are exacerbated by the relative sparsity of 
process-relevant environmental data and metadata, 
differences in measurement approaches and frequen-
cies across the wide range of scales at which methane 
cycling is studied, and uncertainty in the measure-
ments themselves. The biological and environmental 
processes underlying high methane flux variability are 
difficult to incorporate into traditional numerical mod-
els. This is due, in part, to limited observations and 
environmental context for measurements on which to 
base such models, as well as variation in the spatial and 
temporal scales at which processes occur (Lan et al. 
2021; Bridgham et al. 2013).

Workshop Overview
Approximately 100 scientists with various expertise 
from 30 national laboratories, universities, indus-
try, and other federal agencies contributed to the 

workshop, either through a pre-workshop call for 
white papers or direct participation. The first day con-
sisted of plenary presentations, initial brainstorming, 
and ideation. The remaining days were divided into 
topical sessions focused on (1) predictions from fun-
damental microbiology, (2) environmental controls 
and empirical relationships, (3) field measurements 
and observations, (4) data–model integration chal-
lenges, (5) multiscale modeling, and (6) key con-
clusions. Participants discussed knowledge gaps and 
identified key scientific questions suitable for advance-
ment using AI, characteristics and challenges of rele-
vant data and models, opportunities for development 
of related algorithms and infrastructure, and data prod-
ucts and needs currently limiting progress in the field. 
Specifically, attendees discussed the importance of: 

·  Understanding the physiology, activity, and 
impact of methanogens and methanotrophs at 
ecosystem scales and larger.

·  Understanding how plant traits affect soil methane 
release. 

·  Understanding how pore structure and pore-scale 
processes affect methane efflux.

·  Connecting measurements and insights between 
laboratory and field.

·  Capturing hot spots and hot moments in methane 
fluxes.

·  Integrating field methane measurements across 
scales, from chambers to towers to satellites.

·  Establishing benchmarks for model development 
and intercomparisons.
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2 | State of the Science

An NGEE-Arctic researcher takes measurements amid a swarm of mosquitoes. [Courtesy Lawrence Berkeley National Laboratory]

M ethane is a critical component of the carbon cycle with significant implications for Earth’s climate. It is the 
second largest contributor to global warming, accounting for 20% of warming from greenhouse gasses (Ciais 
et al. 2013; Kirschke et al. 2013). On a per-ton basis, methane’s global warming potential, a measure of a 

greenhouse gas’ capacity to absorb thermal radiation, is 27 to 30 times that of carbon dioxide (CO2) over a 100-year 
time horizon (IPCC 2021). Because methane is short-lived in the atmosphere (i.e., 12-year half-life), its impact is 
even more pronounced at shorter time scales, exhibiting 80 to 83 times the warming potential of CO2 over a 20-year 
time horizon (IPCC 2021). These characteristics make methane a reasonable and effective short-term target for 
reaching climate goals where CO2 targets are currently falling short. Reducing methane emissions to 40% to 70% of 
2020 levels by 2030 is critical to staying below the Paris Agreement limit of 1.5oC global average surface warming 
above pre-industrial temperatures (IPCC 2021; UNEP 2023; Rogelj and Lamboll 2024). Rapid advancement in 
both conceptual and predictive understanding of the methane cycle is required to reach this goal.

Mitigating methane emissions requires an ability to differentiate between human-driven and natural emissions, 
as well as to predict emissions changes due to changing environmental conditions. Recent methane levels are 
more than 150% pre-industrial levels, with 2020 and 2021 setting records for largest annual increases in meth-
ane concentrations (15.3 parts per billion and 17 ppb, respectively) since direct air measurements began in 
1983 (NOAA 2022). Annual changes in atmospheric methane concentration have varied greatly since the early 
1990s (see Fig. 2.1, p. 10). An unexpected increase in methane concentrations began in 2007 following a stable 
period from 1992 to 2007. Large uncertainties in both measured and modeled methane emissions and sinks have 
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limited the ability to develop causal links to explain 
this recent trend of accelerating increases in methane 
concentration.

Current and Projected 
Methane Sources
Methane sources include wetlands, freshwater systems 
(e.g., lakes, rivers, streams), wildfires, oil and gas infra-
structure, landfills, cattle, and agriculture (see Fig. 2.2, 
p. 11). With continued climate change, thawing perma-
frost and dissociating methane hydrates from marine 
sediments may greatly increase methane emissions, 
though this remains uncertain (Ketzer et al. 2020; 
Malakhova and Golubeva 2022; Schuur et al. 2022) 
and would not be expected to occur in this century 
(IPCC 2021). 

Wetlands and inland lakes are dominant natural 
sources of global methane emissions, with roughly a 
third of natural emissions coming from each system 
(Saunois et al. 2020; Rosentreter et al. 2021; IPCC 
2021). However, estimates of the contributions and 
relative importance of these methane sources remain 
uncertain, partly due to the dynamic and complex 
nature of these systems and the high levels of uncer-
tainty in capturing the areal extent of wetlands and 
lakes (Pham-Duc et al. 2017; Zhang et al. 2021) 
and partly due to challenges in scaling from ground 
measurements to atmospheric observations (Saunois 
et al. 2020). 

Despite pronounced wetland loss due to human activ-
ities, the effects of climate change on temperature and 
precipitation regimes are driving increasingly high 
overall wetland methane emissions (Peng et al. 2022; 

Fig. 2.1. Annual Changes in Atmospheric Methane (CH4) Based on Globally Averaged Marine Surface Data. This graph 
captures three distinct periods of global changes in atmospheric methane concentration. First, a period of generally decel-
erating annual increases from the mid-1980s to 1992. Second, a period of relative stability between 1992 and 2007 where 
methane concentrations both increased and decreased at lower levels. Finally, a period of accelerating increases in methane 
concentration since 2007. [Courtesy NOAA. gml.noaa.gov/ccgg/trends_ch4]

Annual Changes in Global Atmospheric Methane (CH4) Concentration

https://gml.noaa.gov/ccgg/trends_ch4/
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Fig. 2.2. Discrepancies Between Bottom-Up and Top-Down Models of Global Methane. Flux estimates from the Global 
Carbon Project’s Methane Budget for the period 2008 to 2017 capture the large variation and discrepancy between bot-
tom-up and top-down modeling approaches. For example, bottom-up models estimate global methane emissions rates at 
737 teragrams/year, but top-down models estimate 576 teragrams/year. In this figure, the pair of numbers accompanying 
each arrow represents bottom-up (left) and top-down (right) estimates of methane emissions or sinks, with the range for 
each average shown in parentheses. Primary emissions include fossil fuel production and use, agriculture and waste, biomass 
and biofuel burning, wetlands, and other natural sources. Sinks include soils and atmospheric chemical reactions. [Reprinted 
under a Creative Commons License from Global Carbon Project]

Fluet-Chouinard et al. 2023; Rößger et al. 2022). 
Researchers broadly agree that methane emissions 
from wetlands will increase through the 21st century 
(IPCC 2021), although the magnitude of this change 
remains highly uncertain (Koffi et al. 2020; Chang et 
al. 2023). Recent model projections accounting for 
methane-climate feedbacks suggest that increased wet-
land emissions in response to altered temperature and 
precipitation regimes could nullify an estimated 25% 
to 40% of targeted reductions in anthropogenic emis-
sions needed to meet the temperature goals of the Paris 
Agreement (Zhang et al. 2023), thereby necessitating 
even larger reductions in anthropogenic emissions.

Continued warming is also expected to increase meth-
ane emissions from lakes, especially those located in 
northern latitudes or experiencing eutrophication 
(Beaulieu et al. 2019; Jansen et al. 2022; Zhuang et al. 
2023). Emissions from inland waters comprise the 
largest source of uncertainty in the methane budget, 
ranging from 6 to 185 teragrams (Tg) CH4/yr over the 
past 20 years ( Johnson et al. 2022). These estimates 
are impacted by high spatial and temporal variation in 
fluxes, uncertainty in lake areal extent, and a relatively 
small number of observations (IPCC 2021). Critically, 
current top-down budgets do not account for inland 
waters, contributing to the large gap in bottom-up and 
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top-down estimates of “other” sources in the Inter-
governmental Panel on Climate Change’s (IPCC) 
methane budget (Table 5.2 in IPCC 2021).

Another significant natural methane source is wildfires, 
which are predicted to increase in frequency region-
ally with climate change (Turner et al. 2019; Pausas 
and Keeley 2021). Forest management practices, 
such as fuel reduction, can influence the total amount 
and proportional release of methane during wildfires 
(Volkova et al. 2014). While wildfires directly contrib-
ute pyrogenic methane, they also impact soil carbon 
pools and can indirectly affect the spatial pattern and 
extent of methane release or uptake for years post-fire 
(e.g., Davidson et al. 2019; Wilkinson et al. 2023).  

Dominant sources of anthropogenic methane emis-
sions include cattle farming and fossil fuel infrastruc-
ture (see Fig. 2.2, p. 11; Saunois et al. 2020; IPCC 
2021). These substantial sources are expected to 
respond to climate change differently than natural 
emissions. For example, emissions from oil and gas 
production are complex and poorly constrained, 
varying as a function of atmospheric conditions and 
state of infrastructure (e.g., well construction, age, and 
maintenance; see Krofcheck and Nole white paper, 
p. 87). Reducing emissions from certain anthropo-
genic sources (e.g., methane leaks from oil and gas 
infrastructure) can be accomplished using proven 
technologies, but identifying and responding to leaks 
first requires extensive monitoring and data process-
ing infrastructure (UNEP 2023). Meanwhile, efforts 
to measure and curb emissions from livestock and 
agriculture, which are the largest anthropogenic con-
tributors to methane emissions (see Fig. 2.2, p. 11), 
have been more limited, with a less clear path forward 
(Reisinger et al. 2021). 

Current and Projected 
Methane Sinks
Relative to methane sources, non-atmospheric meth-
ane sinks have received much less research attention. 
The primary methane sink is atmospheric degradation 
by hydroxyl radicals (see Fig 2.2, p. 11; Kirschke et al. 
2013). The second largest sink is aerobic and anaerobic 
methane oxidation by methanotrophic bacteria in soil 

and aquatic ecosystems, though this microbiological 
sink is understudied and potentially underestimated 
(Zhao et al. 2019; Jing et al. 2020; Feng et al. 2023). 
Uptake of methane by soil microbes accounts for 30 
to 38 Tg/yr, or roughly 5% of total methane sinks (see 
Fig. 2.2, p. 11).

Soil methanotroph abundance varies on the global 
scale with climate (particularly mean annual tempera-
ture and mean annual precipitation), soil properties 
(i.e., pH and total organic carbon), and vegetation 
cover (Ding 2024; Heděnec et al. 2024). More 
research is needed to understand how localized soil 
sinks respond to altered precipitation, temperature, 
and atmospheric methane concentrations. Some 
models and meta- analyses show increases (e.g., Gatica 
et al. 2020; Murguia‐Flores et al. 2021) while others 
show decreases (e.g., Ni and Groffman 2018). Notably, 
pan-Arctic models found that the activity of high- 
affinity methanotrophic bacteria can potentially dou-
ble the predicted soil sink strength in this region (Oh 
et al. 2016; Oh et al. 2020). 

Soil methane sinks exist across many ecosystems, but 
cropland soil sinks require special consideration as 
changes are not only influenced by the atmospheric 
and environmental context but also by dynamic man-
agement strategies (Kim et al. 2021). Accounting for 
the management component of the soil sink requires 
understanding human behavior in response to a shift-
ing economic context. Management strategies can 
potentially increase the cropland soil sink (e.g., Runkle 
et al. 2019; Kim et al. 2021). Conversely, increased soil 
moisture resulting from increased frequency of intense 
rainfall events could shift cropland systems to methane 
sources (Cowan et al. 2020; see Morris et al. white 
paper, p. 89). 

While there is broad consensus that methane release 
from natural systems will increase over the next 
decade, there is no such consensus on the magnitude 
or direction of change in the global methane sink.

Predictive Framework
The role of methane as a greenhouse gas has long 
been recognized, and many numerical models 
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have been developed over the past 40 years to cap-
ture environmental controls of methane fluxes 
from terrestrial systems (Xu et al. 2016). Recent 
microbial- to ecosystem- scale models of methane 
emissions have demonstrated the importance of 
incorporating methanogenic substrate production 
and availability, microbial population size and activity, 
plant-mediated transport of methane, and methane 
ebullition to improve predictive accuracy (Song 
et al. 2020; Ricciuto et al. 2021; Sihi et al. 2021). 
Ocean- atmosphere modeling components incorpo-
rating microbial processes have also been developed 
(Reinhard et al. 2020). Incorporating microbial drivers 
into models has improved predictability across scales, 
from ecosystem to land surface models. 

Within natural systems, developing a predictive under-
standing of the methane cycle is hindered by its com-
plex nature. The many biotic and abiotic drivers and 
their non-linear interactions contribute to high spatial 
heterogeneity in localized methane emissions (Stur-
tevant et al. 2016; see Yuan et al. white paper, p. 64). 
For example, soil pore structure can influence soil 
moisture content, thereby influencing microbial hab-
itat, redox dynamics, and both methane production 
and consumption (see Mayes et al. white paper, p. 97). 
Changes in microbial community composition in soils 
can influence landscape-scale methane emissions, but 
predictive understanding of the interactions between 
these biotic and abiotic components is lacking (He 
et al. 2015; Hartman et al. 2017). 

Data Availability
At the global scale, many international efforts to 
increase methane monitoring are underway, including 
the United Nations Environment Programme’s Inter-
national Methane Emissions Observatory (IMEO). 
Satellite and aerial measurement campaigns that 
were recently launched (e.g., Sentinel-5 and Carbon 
Mapper) or will soon launch (e.g., GOSAT-GW and 
MethaneSAT)  will increase the accuracy, spatial res-
olution (i.e., down to 1 km2), and temporal frequency 
of atmospheric methane measurements. Addition-
ally, programs like IMEO and Carbon Mapper aim 
to provide open access to near real-time quantitative 

methane emission data. Alongside these improvements 
in global atmospheric methane data measurements, 
improvements are underway regarding measurements 
of surface characteristics (e.g., land temperature and 
vegetation) from satellites (e.g., PlanetScope and 
Hydrosat) and new data products (e.g., Moon 2022).  

The high spatial and temporal variability in global to 
local methane emissions underscores the need for 
diverse data collected from many high-quality, spatially 
representative sites (IPCC 2019; see Yuan et al. white 
paper, p. 64). The AmeriFlux network launched its 
“Year of Methane” campaign in 2019 to build support 
for collecting methane flux data from a more diverse 
range of sites. This effort resulted in the release of the 
FLUXNET-CH4 dataset which includes methane 
flux data from 79 global sites, with high representa-
tion of freshwater wetlands (Delwiche et al. 2021). 
FLUXNET-CH4 has played a critical role in advancing 
predictive understanding of the methane cycle and is 
referenced throughout this report. Recently, McNicol 
et al. (2023) developed a random-forest-based upscal-
ing model using the FLUXNET-CH4 dataset to pro-
vide bottom-up estimates of methane flux. The model 
succeeded in capturing patterns in extratropical meth-
ane fluxes, but more long-term methane flux monitor-
ing is needed to capture tropical ecosystems (Delwiche 
et al. 2021; McNicol et al. 2023; Yuan et al. 2023). 

Recent modeling work has demonstrated the impor-
tance of including data on microbes and plant traits 
in predictions of methane emissions. Efforts to cap-
ture paired microbial and biogeochemical data are 
underway, such as in the high latitudes (e.g., Barret 
et al. 2022), but more biological data and models are 
needed to capture the critical effects of microbes and 
plants on methane cycling (see Bueno de Mesquita 
and Tringe white paper, p. 70). A methane-focused 
effort comparable to the Genome Resolved Open 
Watersheds database release in DOE’s Systems Biology 
Knowledgebase (Borton et al. 2022) can potentially 
provide insight into genome–phenotype–environment 
relationships. Further, this presents a key opportunity 
to apply advanced AI approaches to integrate genomic 
data with ecosystem-level measurements (see Xu and 
Rodrigues white paper, p. 80). 
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Scientific Challenges
Substantial existing challenges in integrating and trans-
lating data across scales are recognized and discussed 
throughout this report. Examples of these challenges 
include the shifting relevance of individual factors 
across scales and the difficulties in incorporating pro-
cesses occurring at vastly different spatial and temporal 
scales into a single modeling framework. These chal-
lenges are not unique to the methane cycle and under-
lie many BER grand challenges related to “improving 
the predictive power of Earth system models” and 
understanding the influence of microbial communities 
on soil and plant systems and their subsequent effects 
on regional and global environments (BERAC 2017).

Within the context of the methane cycle, workshop 
attendees identified and discussed four scientific chal-
lenges: (1) developing an integrated understanding of 
methane-cycle biology, (2) identifying interspecific 
and abiotic–biotic effects on plant and microbial func-
tion, (3) modeling connections between microscale 
processes and larger-scale process rates, and (4) resolv-
ing discrepancies in global wetland methane emission 
estimates between bottom-up and top-down models.

Scientific Challenge 1: Developing 
an Integrated Understanding 
of Methane-Cycle Biology
Natural methane emissions result from a balance 
between methane production, consumption, trans-
port, and release to the atmosphere. Methanogens and 
methanotrophs directly contribute to the methane 
cycle but their activity can be strongly affected by 
interactions with other microbial taxa (e.g., Megonigal 
et al. 2004; Nozhevnikova et al. 2020; Metcalfe 
et al. 2021; Vigderovich et al. 2023). Plants can also 
influence methanogens, methanotrophs, and other 
microbial community members through litter and root 
exudates. Further, plant adaptations to flooding (i.e., 
highlighting the importance of aerenchyma) can influ-
ence methane transport from the soil and affect the 
spatial distribution of oxidation-reduction conditions 
(i.e., redox potential) within the soil through radial 
oxygen loss. Thus, understanding the biotic com-
ponent of the methane cycle requires physiological 

examination of both plants and microbes, how their 
activity is impacted by interspecific and interkingdom 
interactions, and their response to shifting biotic and 
abiotic conditions.

1.1: Acquiring a physiological understanding 
of microbial populations and the 
mechanisms controlling their functioning
While many factors influence the high spatiotemporal 
variability of methane flux measurements, microbes 
and their interactions must be recognized for their 
critical importance in methane production and con-
sumption. Indeed, microbial methanogenesis could 
not occur without interactions between methanogenic 
taxa and other community members (Megonigal et al. 
2004). Methane consumption that occurs near sites 
of active methanogenesis can substantially reduce 
methane release and is often dependent on interspe-
cific interactions. For example, methane removal from 
ocean sediments occurs primarily through the activ-
ity of anaerobic methanotrophic archaea that must 
directly transfer electrons to a syntrophic partner bac-
terial species to support their metabolism (Skennerton 
et al. 2017). 

The important role of microbiota and their interactions 
is more pronounced in the methane cycle due to the 
relatively few taxa that directly participate compared to 
other biogeochemical cycles. This leads to an increased 
importance of individual microbial taxa, each with a 
unique set of physiological tolerances, interspecific 
interactions, and metabolic dependencies. Ecosys-
tem and land-surface modeling results indicate that 
the accuracy of methane predictions improves with 

The important role of microbiota 
and their interactions is more 

pronounced in the methane cycle 
due to the relatively few taxa that 

directly participate compared to other 
biogeochemical cycles. 
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inclusion of microbe-specific parameters (Song et al. 
2020; Ricciuto et al. 2021; Sihi et al. 2021; Yuan et al. 
2021). 

One of the greatest impediments to integrating micro-
bial mechanisms into climate and ecosystem models 
is the continued inability to translate environmental 
genomic data into complete, accurate, and predictive 
mechanistic models of microbial taxa and commu-
nities. Yet several emerging approaches can enable 
a more complete understanding of the activity of 
methanogens, methanotrophs, and other key microbial 
community members under a range of natural and 
experimental conditions. 

One challenge is overcoming the many errors and 
knowledge gaps that persist in functional genome 
annotation (Warren et al. 2010; Dimonaco et al. 
2022). Application of deep learning methods, in par-
ticular, may help address this challenge by opening 
new avenues for analyzing the function of unknown 
genome sequences by providing insights into three- 
dimensional protein shapes, which are crucial for 
understanding their functions and interactions. 
For example, the AI program AlphaFold accurately 
predicts protein structures, enabling researchers to 
decipher the roles of proteins with unknown genome 
sequences and advance biological understanding 
( Jumper et al. 2021; Varadi et al. 2022).

AI application and related experimental improvements 
can help address the challenge of functional genome 
annotation by delivering (1) new automated labo-
ratory and rapid phenotyping methods that greatly 
improve the quantity of experimental data used to 
drive validation and correction of gene annotations 
and microbial phenotype predictions (see Ch. 3: 
Observations, Experiments, and Discovery, p. 19; 
U.S. DOE 2023) and (2) AI methods that improve 
the integration and consistent accurate propagation 
of functional annotations across reference genomes. 
Further, AI methods can be combined with metabolic 
modeling approaches to fill knowledge gaps that can 
easily break the predictive power of a metabolic model 
operating on its own. They can also provide greater 
insight into the physiology of single key microbial 

community members, including methanogens and 
methanotrophs (Kavvas 2020; Bi et al. 2023). 

While novel culturing approaches are progressing 
(e.g., Wu et al. 2020; de Raad et al. 2022), most 
microbial species remain unculturable, leaving only 
metagenomic data as a tool to reconstruct microbial 
genomes from the environment. This problem is espe-
cially significant in the study of the methane cycle, 
which involves diverse and unknown methanogenic 
and methanotrophic taxa (e.g., Narrowe et al. 2019; 
Smith and Wrighton 2019; Bay et al. 2021; Ellenbogen 
et al. 2023). Challenges in metagenome binning and 
assembly of complex microbiomes typically result in 
mostly low-quality, highly incomplete genomes. This 
lack of high-quality genomes complicates metabolic 
modeling of methane cycling communities and slows 
understanding of energy flow and conservation in 
these communities. In-depth understanding of cultur-
able microbial communities is possible but requires 
substantial investment of time and resources (e.g., 
Orphan et al. 2022). 

1.2: Acquiring a physiological understanding 
of plant populations and the mechanisms 
controlling their functioning and 
interactions with microbes
Methane production and consumption are microbial 
processes, but plants and their traits play important 
roles in transport and regulating net methane emis-
sion, both locally and globally. On plot to site scales, 
plant traits have long been recognized as important 
predictors of methane emission across ecosystems 
(e.g., Whiting and Chanton 1993; Malhotra and 
Roulet 2015; Knox et al. 2021), but their impact is 
less clear in fine-scale methane processes along the 
plant-soil-microbe interface. Plants provide substrate 
for methanogenesis in the form of dead plant material 
(litter) for decomposition and live plant products 
such as root exudates (Lai 2009; Sutton-Grier and 
Megonigal 2011; Bridgham et al. 2013). Plant tissues 
(e.g., aerenchyma) also serve as conduits for methane 
transport from soils to the atmosphere and atmo-
spheric oxygen to soils, the latter leading to radial 
oxygen loss and potentially causing increased methane 
oxidation in anaerobic settings (van Bodegom et al. 
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2001; Noyce et al. 2023). It remains unclear how 
methane-relevant plant traits differ among plant spe-
cies and to what extent this trait variation is genetically 
determined (Takahashi et al. 2013; Yoo et al. 2015; 
Wany and Gupta 2018).

It further remains unclear how plants influence meth-
ane processes differently between ecosystem types 
and under changing environmental conditions. For 
example, global warming is expected to increase 
above- and below-ground plant productivity in some 
wetland ecosystems (Noyce et al. 2019; Hanson 
et al. 2020; Malhotra et al. 2020). The effect on net 
methane emissions could be positive due to increased 
substrate availability and plant transport or negative 
due to increased rhizosphere oxygenation (Hopple 
et al. 2020; Noyce et al. 2023). Examples from a boreal 
peatland, a tropical peatland, and a salt marsh provide 
some insights into plant trait–methane linkages, but 
not enough measurements exist across ecosystems to 
parameterize plant–trait linkages with methane pro-
duction in local- and global-scale models (Xu et al. 
2016; Yuan et al. 2023). 

While recent and soon-to-launch satellites will improve 
the capture of methane and satellite- observable plant 
traits (e.g., productivity), many plant traits critical to 
the methane cycle (e.g., rooting traits and aerenchyma) 
cannot be observed in this way. Increased measure-
ments and trait distribution models are needed to 
better capture these traits.

Scientific Challenge 2: Identifying 
Interspecific and Abiotic-Biotic Effects 
on Plant and Microbial Function
Organisms behave differently in natural environments 
than in laboratory settings, and many challenges exist 
in translating laboratory-derived scientific understand-
ing into field settings. Thus, while it is important to 
develop a mechanistic understanding of what organ-
isms can do and the conditions under which they grow 
or perform specific functions (e.g., methanogenesis, 
methanotrophy), it is also important to understand 
their distribution and how environmental context, 
including soil pore structure and moisture, influence 
growth and activity. Microbial activities involving 

methane production and consumption are highly influ-
enced by surrounding soil moisture content and pore 
structure. Spatiotemporal heterogeneity in soil bio-
physical conditions at the microsite scale regulates hot 
spots and hot moments of methanogenic and metha-
notrophic activities and ultimately, net methane emis-
sions at the ecosystem scale (Sihi et al. 2021; Lacroix 
et al. 2023). Hence, imaging and modeling tools that 
predict microbial responses to variant soil conditions 
may aid in predicting gross and net methane fluxes.

Understanding the complex relationships among envi-
ronmental conditions, interspecific interactions, and 
plant and microbe physiological tolerances is critical to 
predicting their contribution to methane cycling. Plant 
species distribution and niche modeling comprise 
an established area of research that can be leveraged 
to understand these complex relationships for plant 
communities. However, such information is limited 
for microbiomes. Given the complexity of these rela-
tionships, direct generation of meaningful and testable 
hypotheses under field conditions is difficult. One path 
forward is through developing robust neural network 
models using genomic content as predictors of micro-
bial community composition in response to environ-
mental controls (e.g., Larsen et al. 2011; Mallick et al. 
2019; Reiman et al. 2021). Evaluating these models, 
built from high-throughput laboratory data and tested 
on field data, is critical to determining the transfer-
ability of lab-derived knowledge into more complex 
environments.

Distributed shotgun metagenomic sequencing efforts, 
such as the Genome Resolved Open Watersheds data-
base (Borton et al. 2023), could provide initial data 
for evaluating such models, although iterative labo-
ratory research and validation for specific functional 
guilds and ecosystem types may be required. Notably, 
because the presence or abundance of microbial taxa 
may serve as predictor variables, such large meta-
genomic datasets may also help identify genetic mark-
ers and microbes that impact methane emissions but 
happen to fall outside of existing focal guilds (Khan 
et al. 2023), providing new avenues of exploration for 
laboratory studies. 
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A similar approach could link plant and microbial com-
munity composition to methane cycling. However, few 
available field datasets capture both methane flux and 
plant and microbial species composition (see Bueno 
de Mesquita and Tringe white paper, p. 70). This 
presents a major data gap (see Ch. 4: Data Curation, 
Integration, and Products, p. 25), and recent modeling 
efforts have underscored the need for plant and micro-
bial trait data. To address this challenge, generative 
adversarial networks (GAN; see “Artificial Intelligence 
Approaches” sidebar, p. 2) could leverage existing field 
data on microbial community composition across a 
range of environmental conditions. GANs would use 
this data to generate training datasets of simulated 
microbial community composition based on environ-
mental conditions for sites that have methane flux data 
but lack microbial data. However, considerable addi-
tional data are likely needed both for robust evaluation 
of these models themselves and any downstream mod-
els using these data. 

A further challenge remains, however, in that most 
sites with long-term, ecosystem-scale methane flux 
measurements (e.g., FLUXNET-CH4) capture only 
net flux rates. These data reflect the balance between 
methane production and consumption processes but 
obscure linkages between the underlying biology 
and measured rates, hindering modeling efforts. To 
address this, data-constrained Bayesian (e.g., Ueyama 
et al. 2022; Ueyama et al. 2023) or causality-guided 
machine learning (e.g., Yuan et al. 2022; see Zhu 
et al. white paper, p. 62; see “Types of AI” sidebar, 
p. 3) models could further partition net methane flux 
rates into production, consumption, and transport 
processes.

Scientific Challenge 3: 
Modeling Connections Between 
Microscale Processes and 
Larger-Scale Process Rates
Understanding the influence of microbial processes at 
larger, aggregate scales is critical to unraveling complex 
methane cycle dynamics. Achieving this goal requires 
bridging the gap between microscale processes and 
larger-scale ecosystem behavior. A scientific challenge 
remains in identifying the key elements of soil pores 

and microbial communities that are crucial for generat-
ing methane cycle predictions at larger scales and defin-
ing the level of detail required to accomplish this goal.

Incorporating metagenomic information related to 
processes like methanogenesis and methanotrophy 
into large-scale numerical models poses a significant 
challenge. The challenge results, in part, from the 
orders of magnitude difference in scales between 
microbial and global processes and the difficulties in 
reducing large metagenomic datasets into smaller, 
better targeted parameter sets. Recent approaches have 
examined microbial functional groups (e.g., Song et al. 
2020; Ricciuto et al. 2021; Sihi et al. 2021), but this 
remains an active area of study (see Song et al. white 
paper, p. 99; Xu and Rodrigues white paper, p. 80). 
One approach is to apply neural networks, including 
long short-term memory networks (see “Artificial 
Intelligence Approaches” sidebar, p. 2), to develop 
surrogate models (see Oh et al. white paper, p. 74). 
Such neural network models offer both computational 
efficiency and scalability. 

Hot spots and hot moments in methane production, 
transport, and release further complicate traditional 
modeling approaches. These localized emissions bursts 
play a pivotal role in methane dynamics, making it 
vital to address them accurately. However, attempts to 
model them, including by employing AI approaches, 
is hindered by data scarcity. More advanced and flex-
ible imaging and modeling techniques are needed to 
handle the dynamic nature of soil pores and improve 
sampling design and sensors (see Ch. 3: Observations, 
Experiments, and Discovery, p. 19). 

Addressing the broader challenge of modeling across 
scales, applying model consolidation or ensemble 
approaches (see “Types of AI” sidebar, p. 3) may be 
useful to address parametric and structural uncertainty 
(see Ch. 5: Multiscale Modeling, p. 33). The combi-
nation and evaluation of various models results in a 
better predictive outcome and a more comprehensive 
understanding of ecosystem dynamics, especially in 
the context of microbial contributions to large-scale 
phenomena.
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Scientific Challenge 4: Resolving 
Discrepancies in Global Wetland 
Methane Emission Estimates Between 
Bottom-Up and Top-Down Models
Large discrepancies in predicted global methane fluxes 
persist between bottom-up and top-down models. Bot-
tom-up methane models estimate methane emissions 
by aggregating ground-based data from individual 
sources or activities and then use inventories, scaling 
parameters, and statistical approaches to aggregate 
them to larger scales. Meanwhile, top-down models 
are based on atmospheric measurements of methane 
and use inversions of atmospheric transport models to 
identify sources of methane flux. Bottom-up models 
estimate global emissions rates at 737 (range: 594 to 
880) Tg CH4/year, but top-down models estimate 576 
(550 to 594) Tg CH4/year. Bottom-up models esti-
mate sink rates at 625 (500 to 798) Tg CH4/year, but 
top-down models estimate 556 (501 to 574) Tg CH4/
year (see Fig. 2.2, p. 11).

Workshop discussions and white paper topics revealed 
that much of this discrepancy may result from incom-
plete bottom-up models. One challenge with bottom- 
 up model development is data sparsity (e.g., soil carbon 
sinks; see Oh et al. white paper, p. 74) and biased 
distribution of available data (see Delwiche et al. white 

paper, p. 93). In the case of biased data, models can be 
developed to compensate for the bias, but additional 
data are needed to validate these models. 

Another challenge is the inability to access or leverage 
existing data, either due to challenges in cross-domain, 
interdisciplinary science (e.g., plant traits and micro-
bial activity; see Scientific Challenge 1, p. 1, and Scien-
tific Challenge 2, p. 9) or issues with proprietary data 
(e.g., see agroecosystems in Morris et al. white paper, 
p. 89; see oil and gas infrastructure in Krofcheck and 
Nole white paper, p. 87). 

A further challenge is the ability to capture the high 
degree of spatiotemporal heterogeneity in environ-
mental conditions that influence the methane cycle, 
including flooding (see Stachelek et al. white paper, 
p. 72) or wildfires (see Li et al. white paper, p. 85). 

A final challenge is partitioning existing emissions 
data into processes that better align with the concep-
tual understanding captured in bottom-up models, 
such as between natural and anthropogenic emissions 
data (see Krofcheck and Nole white paper, p. 87) 
and between individual process components of net 
methane flux (see Zhu et al. white paper, p. 62). 
Many of these gaps are progressing toward resolution, 
albeit slowly.
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C urrent measurement-based estimates of global methane flux contain large uncertainties due to a lack of suf-
ficient measurements across scales, including local, regional, and global scales. Field- and laboratory-based 
approaches to methane data collection include point-source measurements that are spatially localized and 

often offer poor temporal coverage. Examples include soil incubations from field samples, bubble traps, and flux 
chambers. Micrometeorological flux towers (see Fig. 3.1, p. 20; Morin et al. 2017) offer high temporal resolution 
but low spatial resolution. Other measurements provide improved spatial coverage but only for snapshots in time, 
including vehicle-mounted sensors (e.g., Picarro, Aeris, and Licor) and drone or aircraft-based sampling. Remote 
sensing offers large regional spatial coverage, but its limitations include poor temporal coverage, poor spatial res-
olution, and high detection limits. Poor resolution complicates identification and quantification of confounding 
methane sources, such as landfills, livestock, and oil and gas refineries. 

Datasets from these measurements are critical to artificial intelligence and machine learning (AI/ML) work-
flows because they serve as benchmarks for potential algorithms aimed at solving methane-specific problems. 
AI- enabled measurement platforms, including edge computing and high-throughput, autonomous laboratories, 
can help address some of the limitations with measurement collection. Edge computing can focus measurements, 
enabling better capture of critical data including hot spots and hot moments, and autonomous laboratories 

3 |  Observations, Experiments, 
and Discovery

Researchers measure methane and carbon dioxide emitted from coastal forest soil. [Courtesy Pacific Northwest National Laboratory]
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can increase data generation from limited field 
samples, providing better biological insights into 
methane processes.  

Observations Needed 
Across Scales
Workshop participants identified several gaps in multi-
scale, multidisciplinary data needed to accurately 
inventory top-down and bottom-up methane emis-
sions, advance modeling and analysis, and improve 
predictive understanding of the methane cycle. Many 
of the data collection technologies needed to fill these 
gaps could benefit from extensive network coverage 
in remote areas through advanced telemetry and 
wide-area networking (e.g., satellite internet service 
or 5G cellular service). Filling these gaps would accel-
erate progress toward predictive understanding of the 
methane cycle:

·  Improved Measurements of Methane Hot Spots 
and Hot Moments. Methane release is highly het-
erogeneous in space and time, and hot spots and 
hot moments make substantial contributions to 
overall emissions. Flexible, high-throughput, and 
automated methane measurements are required 

across a comprehensive set of biological and envi-
ronmental conditions. AI-based instrumentation, 
such as unmanned aerial vehicles (i.e., UAVs, 
drones) that follow inverse modeling measure-
ments, may be particularly useful in capturing this 
variability. New, on-the-ground robotic technol-
ogies combined with autonomous sensing plat-
forms can be applied as well.

·  Higher-Resolution Spatiotemporal Methane 
Measurements. Data gaps often exist in meth-
ane flux measurements from eddy covariance 
towers and chambers. Filling these gaps is crucial 
to enabling scaling from intra-daily temporal 
scales to seasonal and annual flux estimates. AI 
approaches, including artificial neural networks 
(ANN), can be used to perform temporal gap- 
filling of continuous flux measurements (e.g., eddy 
covariance measurements; see Fig. 3.1, this page). 
Spatial coverage of methane measurements can be 
gap-filled as well, expanding flux measurements 
across environmental gradients, including below-
ground properties, to better capture a range of 
spatial variability. 

·  Spatially and Depth-Resolved Data on Sub-
surface Properties. Methane production, 

Fig. 3.1. Evaluating Sources of Error in Gap-
Filled Data Using Artificial Intelligence (AI). 
Large uncertainties in methane emissions rates 
(yellow and cyan shading) make it difficult to 
determine whether carbon dynamics in an 
urban freshwater wetland offset net greenhouse 
warming effects. Two different methane flux 
measurement techniques, eddy covariance and 
chamber measurements, were used in tandem 
to correct for their respective limitations and 
achieve a better estimate of net methane flux 
(black line). An AI model using an artificial neural 
network (ANN) was used to gap-fill the methane 
flux observations (red line), and Monte Carlo 
simulations of the AI ANN model were used to 
determine the uncertainty of these estimates due 
to observation errors (yellow shading) and spatial 
heterogeneity of fluxes and sampling locations 
(cyan shading). [Morin, T. H., et al. 2017. “Com-
bining Eddy-Covariance and Chamber Measure-
ments to Determine the Methane Budget from a 
Small, Heterogeneous Urban Floodplain Wetland 
Park,” Agricultural and Forest Meteorology 237-238, 
160-170.]
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consumption, transfer, and release are influenced 
by soil properties, such as soil pore structure, 
mineral chemistry, and organic matter chemis-
try. New approaches or sensors are needed to 
obtain spatially resolved data that are difficult to 
observe with remote sensing, such as soil and 
subsurface properties. For example, measure-
ments of microsite heterogeneity in drivers of 
methane production and oxidation are limited but 
needed to capture spatial heterogeneity in models 
and explore spatial distribution of taxa. While 
additional manual measurements and sampling 
campaigns, such as the Molecular Observation 
Network (MONet, www.emsl.pnnl.gov/monet), 
are needed, ensemble modeling approaches can be 
leveraged to generate spatially resolved data prod-
ucts (e.g., Mishra et al. 2021).

·  Microbial Community Information Paired with 
Rate and Function Measurements. Microbes are 
key players in the production and consumption of 
methane, but more data and better understanding 
of microbial processes across a range of sites and 
conditions are needed to understand how their 
physiology and community interactions impact 
methane emissions. High-throughput automated 
experiments can be leveraged to better understand 
microbial physiology and species interactions, 
while advanced techniques like isotope pool dilu-
tions and gas push-pull can be used to quantify 
gross rates of production and oxidation in field 
settings with more complex communities. Field 
validation of findings from these high-throughput 
automated experiments at diverse, long-term field 
sites will factor crucially into knowledge transfer 
from laboratory to field and larger-scale models.

Sampling Location and Design
Observational strategies should be targeted across 
spatiotemporal scales, from microsite-level methane 
heterogeneity within local ecosystems to the global 
methane budget. Methane measurements focused 
on local-scale features are critical for identifying and 
understanding local sources and sinks. In addition 
to measurements across scales, robust model–data 
intercomparisons require well-defined surface flux 

benchmark datasets. Such datasets can enable seamless 
comparisons across scales, connecting local ecosys-
tems to the global Earth system.

Methane measurements across every ecosystem would 
be ideal, but they are unfeasible. Thus, a strategy is 
required to determine which areas are most critical 
for measurement and observation. This approach 
includes using a combination of bias assessments in 
sample distribution and quantified measurement and 
modeling uncertainties to predictively identify high-
value locations and times for additional measurements. 
Additional remote sensing instrumentation, such as 
satellite-based or airborne platforms, is also needed. 
Blending these remote sensing and local in situ obser-
vations is critical to filling spatial and temporal data 
gaps and may require focused sampling campaigns.

For smaller-scale observations, from single sites to 
ecosystems, challenges arise when determining where 
and when to collect data. One potential target area for 
new flux tower measurements is along hydrological 
gradients, which are sources of many model uncertain-
ties (see Delwiche et al. white paper, p. 93). Another 
critical measurement location is the transition between 
soil sinks and sources, specifically redox dynamic 
zones where soil fluctuates between oxic and anoxic 
conditions. Understanding microsite distribution and 
response to changing moisture and redox conditions 
is critical to predicting hot spots and hot moments of 
methane production and consumption. Integrating 
automated sensing of real-time methane emissions at 
the ecosystem-scale and soil biophysical conditions 
with laboratory-based snapshots of soil pore structure 
and microsite distributions would enable capture of 
the spatial and temporal dynamics of underlying meth-
ane cycle processes.

For larger-scale observations, a key issue is global 
methane budget uncertainty. Large-scale measurement 
strategies require satellite remote sensing platforms, 
such as the TROPOspheric Monitoring Instrument 
(TROPOMI), which can collect high-resolution mea-
surements around the globe with regular frequency. 
The richness of these remote sensing datasets provides 
an opportunity to use explainable AI to examine soil, 
thermal, hydrological, and geochemical processes 

https://www.emsl.pnnl.gov/monet
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contributing to methane dynamics. ML can also be 
used to blend local ecosystem measurements with 
remote sensing observations in a reproducible and 
physics-constrained manner, enabling improved 
methane flux retrieval.

Focused sampling strategies and data representation 
are needed to improve capacity for blending remote 
sensing and in situ local measurements, which enables 
seamless ingest, prediction, and evaluation of various 
AI/ML algorithms aimed at bridging the gap between 
these measurements.

Improved Data Collection 
Technologies
In addition to key regions of opportunity, new mea-
surement platforms are also available. These include 
UAVs, edge sensing and computational platforms, 
and autonomous laboratories. UAVs enable high spa-
tiotemporal sensing for scanning entire local systems 
and could collect methane fluxes both near and above 
Earth’s surface. While the new platforms hold great 
promise, an important challenge to applying them 
is the remoteness of many high-methane-producing 
regions, which complicates data transfer and ML 
model application in the field.

Edge Computing for 
Methane Measurements
Edge computing platforms offer development and 
application of increasingly robust methane measure-
ment techniques (see Fig. 3.2, p. 23). These systems 
enable transparent end-to-end workflows, including 
consistent quality control methods and dynamic prod-
ucts based on environmental features. Edge computing 
serves as a means of controlling the sensing and actu-
ation of data collection, which enables environmental 
observations at a level of detail appropriate to existing 
conditions. For example, edge computing can increase 
data resolution (i.e., increase sampling frequency) 
during low atmospheric pressure or storm events when 
methane ebullition is more likely to occur. Edge com-
puting can be leveraged by combining high-density 
forward-looking infrared (FLIR) cameras with image 
processing to detect methane hotspots and adjust 

sampling location accordingly. This approach achieves 
computational efficiency and meets data reduction 
goals by processing only the data that are necessary 
and relaying only model outputs to primary data 
storage systems.

Edge computing can also be applied beyond measure-
ment collection. Measurements can be blended with 
other data sources, such as FLUXNET-CH4 or exist-
ing U.S. Department of Agriculture crop-type data-
bases, to execute pre-trained AI models or test recently 
developed algorithms. Pattern recognition could be 
used as well, relaying discovered methane signatures 
to the edge computing system and triggering process 
models to run when necessary. One potential model 
based on these signatures is the Massively Parallel 
Reactive Flow and Transport Model for Describing 
Subsurface Processes (PFLOTRAN; Hammond et 
al. 2014). Data from such computationally expensive 
models can be intelligently compressed and transferred 
to larger cloud- or high-performance computing data 
centers using 5G technology, where available (see 
Mudunuru et al. white paper, p. 101).

Autonomous Laboratories for 
Model Training and Evaluation
A laboratory analogue to AI-driven or enhanced sen-
sor platforms is the autonomous laboratory. Autono-
mous laboratory systems are envisioned to combine 
the power of high-throughput data generation with 
AI-enabled analysis and automated experimental exe-
cution. The opportunity to establish such approaches 
to large-scale data generation from complex systems 
makes them attractive in the large combinatorial spaces 
typically found in biology, such as examining pairwise 
and multi-species interactions in communities with 
hundreds to thousands of species. 

Empirical data generation from biological processes 
in the laboratory can be time-consuming and may not 
scale with the myriad factors influencing methane gen-
eration and consumption. Autonomous laboratories 
can help explore concentration gradients and com-
binations of biotic, abiotic, and interspecific factors 
influencing organism growth or process rates involved 
in methane cycling. However, examining the methane 
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Fig. 3.2. Edge Computing Defined. This illustration highlights what is meant by “edge computing,” or the practice of bring-
ing computation closer to data collection. Typical non-edge-computing paradigms involve collecting observations (often in 
remote locations), transferring data to a large computing center, then performing scientific analyses. In edge computing 
paradigms, sensors (see Step 1) are connected directly to a tensor processing unit (TPU)/central processing unit (CPU), 
which can be used to deploy and train complex AI/ML workflows. A TPU/CPU established near the edge avoids a data 
resampling or reduction step which is often needed to efficiently transfer data to cloud and high-performance-computing 
(HPC) centers. Instead, edge computing is capable of handling full data resolution or, in cases where HPC is necessary, it 
could aid in advanced AI/ML data reduction techniques. Both capabilities would benefit the analysis of methane observa-
tions. [Mudunuru, M. K., et al. 2021. EdgeAI: How to Use AI to Collect Reliable and Relevant Watershed Data, AI4ESP-1095. U.S. 
Department of Energy Office of Science, Biological and Environmental Research Program.]

cycle via autonomous laboratory approaches poses 
additional challenges, both because methanogens 
require low-to-no oxygen environments and because 
methane itself exists in a gaseous state as a substrate 
or end-product at ambient temperatures. These 
challenges may be better addressed in miniaturized 
contexts (e.g., microfluidic-inspired reactors) where 
better control of local experimental conditions can be 
implemented. Advanced imaging techniques also may 
assist with phase change observations. Additionally, 
workflow automation is not solely physical but also 

encompasses information and data processing. Auton-
omous laboratory systems can serve as ideal platforms 
to train and evaluate models (U.S. DOE 2023).

Two key challenges must be addressed in this context. 
One is reconciling integrated data types from autono-
mous laboratory systems to inform larger-scale mod-
els. The second is identifying and prioritizing which 
datasets must be generated by an autonomous labo-
ratory system. As outlined in Ch. 4: Data Curation, 
Integration, and Products (p. 25), several data gaps and 
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needs have been identified, primarily in a field context. 
This presents sub-challenges for prioritizing (1) how 
to address data gaps and needs in an autonomous 
laboratory system in a controlled environment (i.e., 
utilizing conventional laboratory assays) and (2) how 
to create field-deployable autonomous laboratory sys-
tems that could utilize networked field sensors tied to 
a portable field laboratory to modulate temporal sam-
pling and assaying as needed.

Future AI Advances
Many ML approaches, such as ANNs, are already 
used routinely by the research community to resolve 
issues of missing data caused by instrument errors. 
Further incorporation of AI approaches into improved 

observational and experimental platforms (i.e., UAVs, 
edge-computing driven sensor platforms, and auton-
omous laboratories) can help resolve long-standing 
data gaps that have slowed progress toward a predic-
tive understanding of the methane cycle and provide 
more robust benchmark datasets to evaluate and 
compare predictive model performance. These plat-
forms require co-development with the computational 
infrastructure needed to support them (see Ch. 8: 
Computing Infrastructure, p. 49). AI methods can 
be used to improve data assimilation and sensitivity 
analysis (see Ch. 5: Multiscale Modeling, p. 33), and 
the output from those analyses can be used to design 
focused sampling campaigns, leading to more efficient 
data collection and scientific discovery.
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4 |  Data Curation, Integration,  
and Products

Diverse datasets are needed to close the methane budget, determine changes to methane cycling and fluxes due 
to climate change and extreme events, and identify methane mitigation measures. These objectives require 
data spanning multiple spatial (molecular to global) and temporal (hourly to multidecadal) scales (see 

Fig. 4.1, p. 26). They also require integration of interdisciplinary measurements such as genomic and phenotypic 
information to quantify biotic controls on methane production, consumption, and release; biogeochemical fluxes; 
climate and hydrological drivers of methane cycling; and anthropogenic emissions. The increasing availability of 
curated and integrated datasets has proven essential for advancing artificial intelligence (AI) and machine learning 
(ML) applications in many scientific domains. 

The use of data-driven models requires easily accessible and well-documented datasets as inputs, as well as stan-
dardized benchmark data products for comparing model performance. However, challenges exist in acquiring, 
curating, and synthesizing relevant data from different sources for scientific use and AI/ML applications. First, 
datasets and databases that are relevant, available, and useful to address specific scientific questions need to be 
identified. Next, available data must be converted into model-ready data products. Conversion may require trans-
forming existing data (e.g., by subsetting or scaling) to appropriate spatial domains and resolutions; harmonizing 
inconsistent variable names, units, and data formats; performing quality assurance and quality control (QA/QC); 
and gap-filling missing data. 

A researcher uses a floating chamber and a gas analyzer to measure methane at Old Woman Creek. [Courtesy The Ohio State University]
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Fig. 4.1. Integrating Data Across Spatial Scales and Temporal Time Steps. Examples of instrumentation for collecting 
methane observations, along with associated output datasets, illustrate the inherent challenges of integrating data from 
different sources in space and time. The spatial scales reflect the typical footprint of each observational approach. The tem-
poral timestep scale shows observation frequency in typical data products and represents approximate order of magnitude 
estimates with potential aggregation of high-frequency data. Instrumentation may collect data at higher spatial or temporal 
resolution, causing spatial scales and temporal timesteps to vary widely according to research goals and deployment strategy. 
[See Appendix E, p. 117, for image credits.]
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The process of identifying and converting vast 
amounts of publicly available data into AI-ready 
products can be time-consuming and labor-intensive. 
Roughly 80% of processing time is spent preparing 
data and only 20% is spent analyzing data or modeling, 
prompting the term “the 80/20 rule of data science.” 
However, the advent of new AI/ML technologies, 
especially large language models, offers opportuni-
ties to accelerate data discovery and integration and 
improve the productivity of scientific workflows.

This chapter describes how the general challenges 
outlined above lead to using AI/ML to advance pre-
dictive understanding of the methane cycle. The Data 
Gaps and Needs section, this page, describes data 
requirements for different scientific challenges iden-
tified in the workshop. The AI-Ready Data Synthesis 
and Benchmark Products section (see p. 28) then 
identifies opportunities to address these data needs 
by combining existing data into value-added products 
that can easily be applied to data-driven modeling. The 
Challenges in Data Availability and Curation section 
(see p. 30) outlines bottlenecks to making existing 
data usable for hypothesis testing, modeling, and 
analysis (e.g., data quality checks, uncertainty quan-
tification, harmonization, and benchmark product 
creation). Finally, the Enabling Data Discovery and 
Integration with Artificial Intelligence and Machine 
Learning section (see  p. 31) highlights challenges and 
opportunities associated with using AI/ML to make 
data scientifically usable, such as by increasing data 
discoverability across sources, improving re usability of 
existing data, and enabling data integration and scaling 
to appropriate resolutions. 

Data Gaps and Needs
Vast amounts of Earth and environmental science 
data are now available for use in data-driven methane 
cycling models, including observations from remote 
sensing applications, sensor networks, metagenomic 
and transcriptomic analyses, and model simulation 
outputs. These data can be combined in myriad ways, 
so the first step toward using AI/ML to advance under-
standing of the methane cycle requires identifying 
data gaps and needs for specific scientific use cases. 

A subsequent step is to determine whether existing 
data are available with sufficient spatiotemporal cov-
erage, quality, resolution, and metadata for use in 
data-driven models.

AI4CH4 workshop participants identified several 
gaps in the body of multiscale, multidisciplinary data-
sets available to accurately inventory top-down and 
bottom- up methane emissions, advance modeling and 
analysis, and improve predictive understanding of the 
methane cycle. Some data gaps can be filled by collect-
ing new observations, synthesizing existing datasets, 
or running simulations to produce synthetic data. Sci-
entific challenges and associated data needs relating to 
the methane cycle include:  

·  Improving bottom-up estimates from wet-
lands, which are the largest natural sources of 
methane. Quantification of wetland transport and 
emissions requires more reliable estimates of the 
global extent of wetlands and other waterbodies 
(see Stachelek et al. white paper, p. 72); synthe-
sis of existing data, such as eddy covariance and 
chamber measurements (see Feng et al. white 
paper, p. 106; Yuan et al. white paper, p. 64); and 
additional data or observations to improve models 
that extrapolate bottom-up measurements to larger 
spatial scales.

·  Parameterizing and reducing uncertainties in 
process models used to estimate bottom-up 
emissions, with direct biological and anthropo-
genic attribution of methane sources. Specifically 
needed at large spatial scales are high-resolution 
data for estimating plant-trait model parameters 
(e.g., vegetation type, leaf area index, and root 
traits including gas transport capacity) and, more 
broadly, ecosystem productivity (see Malhotra 
et al. white paper, p. 91). Data on plant and micro-
bial trait distribution (e.g., genomic potential, 
abundance of methanogenic and methanotrophic 
pathways) and models of genotype-phenotype 
relationships could be used to improve such param-
eterization (see Ch. 5: Multiscale Modeling, p. 33).

·  Improving constraints on processes such as 
methanogenesis and methane oxidation (e.g., 
Zhu et al. white paper, p. 62). Such advances 
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would require (1) co-located microbial com-
munity dynamics and flux data (e.g., Bueno de 
Mesquita and Tringe white paper, p. 70); (2) soil 
moisture and redox conditions and associated 
concentrations of oxygen or other electron accep-
tors; (3) dissolved and atmospheric methane 
isotope measurements; (4) insight into fine-scale 
methane cycling changes using imaging technolo-
gies, such as computed tomography scanning and 
neutron tomography, combined with geochemical 
and flux data (see Mayes et al. white paper, p. 97); 
and (5) the ability to integrate molecular- to 
plot-level microbial data into field- to global-scale 
ecosystem models (e.g., Mayes et al. white paper, 
p. 97; Xu and Rodrigues white paper, p. 80). 
Achieving these objectives is particularly challeng-
ing given the small scales and snapshot nature of 
these data. Also needed is partitioning of wetland 
and other biogenic fluxes into methane produc-
tion and oxidation using existing data products 
such as FLUXNET-2015 (see Zhu et al. white 
paper, p. 62).

·  Quantifying the spatiotemporal heteroge-
neity of methane measurements, particularly 
at monitoring sites with continuous, spatially 
extensive data. This can be achieved by co- locating 
instrumentation, synthesizing data from con-
tinuous chamber measurements at eddy cova-
riance sites (see Yuan et al. white paper, p. 64), 
and decomposing flux data (see Chu et al. white 
paper, p. 77). Methane ebullition is a dominant 
methane release pathway from aquatic systems 
but is difficult to quantify due to high variability 
in space and time. Data are needed to capture the 
fluxes, spatial extent, and corresponding drivers 
(e.g., atmospheric pressure and water table depth) 
of bubbling and other episodic methane sources 
at large scales, particularly during triggering dis-
turbance events such as storms, decreasing water 
levels in waterbodies, and wildfires (Varadharajan 
and Hemond 2012; Quebbeman et al. 2022; 
Zhu et al. 2022). New approaches to obtaining 
highly resolved spatiotemporal fluxes can help 
constrain the hot spots and hot moments of meth-
ane release. Such approaches include combining 

spatially extensive aerial or aquatic imaging (e.g., 
Berg et al. 2022; Chen et al. 2022; Keremedjiev 
et al. 2022) with temporally high-resolution mea-
surements using, for example, AI-assisted autono-
mous instrumentation (see Ch. 3: Observations, 
Experiments, and Discovery, p. 19). 

·  Quantifying anthropogenic sources of meth-
ane, such as dairy farming, fossil fuel extraction 
and transportation, landfills, agriculture, and 
industrial emissions (see Morris et al. white 
paper, p. 89). This would require easier access to 
proprietary data spread across different sources; 
such data are inherently challenging to obtain. 
In addition, data on management practices (e.g., 
inputs, chemicals, and irrigation) for economically 
important crops and grazing lands in different 
agro-ecological regions would enable identifica-
tion of methane mitigation measures.

·  Quantifying top-down estimates and aggrega-
tion across scales with higher spatiotemporal 
resolution using remote sensing at different 
scales (e.g., satellite imagery and drones). Remote 
sensing can provide fine-resolution temporal and 
spatial surface characteristics, such as vegetation 
indices, surface temperature, and soil moisture, 
which are rarely available at monitoring sites 
(see Chu et al. white paper, p. 77). 

In addition to multiscale measurements, data are 
needed across a variety of natural and managed 
ecosystems, including wetlands, peatlands, forests, 
croplands, lakes and reservoirs, streams, estuarine sys-
tems, oceans, tundra, and human-dominated systems 
(e.g., oil and gas fields and urban environments). A 
top priority is the need for co-located measurements 
in space and time at monitoring sites for use in mod-
els. This may require new measurements (see Ch. 3: 
Observations, Experiments, and Discovery, p. 19) as 
well as new data products after curation and integra-
tion of existing data (see AI-Ready Data Synthesis and 
Benchmark Products, this page).

AI-Ready Data Synthesis 
and Benchmark Products
To address the identified data needs, workshop par-
ticipants highlighted opportunities for data synthesis 
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efforts and products that provide training or validation 
data for AI and ML applications. AI-ready datasets 
are products that have been collected into a single 
harmonized format, curated (i.e., QA/QC, gap-filling, 
or scaling to appropriate resolutions), and linked to 
useful metadata. The research community has recently 
produced several integrated data products relevant to 
the methane cycle (see “Example Methane Datasets” 
sidebar, this page).

Opportunities exist to synthesize resources and datasets, 
particularly those supported through DOE funding and 
other U.S. federal agencies, into benchmark products for 
AI/ML applications. Potential targets include: 

·  DOE’s AmeriFlux, global FLUXNET data, 
and other datasets generated as part of the 
AmeriFlux Year of Methane (ameriflux.lbl.gov/
year-of-methane/year-of-methane).

·  DOE’s Environmental System Science Data Infra-
structure for a Virtual Ecosystem (ESS-DIVE): 
natural gradient measurements and manipu-
lative experimental data from projects such as 
(1) Coastal Observations, Mechanisms, and Pre-
dictions Across Systems and Scales (COMPASS), 
(2) Spruce and Peatland Responses Under Chang-
ing Environments (SPRUCE), and (3) Next- 
Generation Ecosystem Experiments (NGEE) in 
the Arctic and tropics (ess-dive.lbl.gov).

·  DOE’s National Microbiome Data Collabora-
tive (NMDC) multiomics microbiome data 
(microbiomedata.org).

·  DOE’s International Land Model Benchmarking 
(ILAMB) project: model-data intercomparison 
and integration datasets (ilamb.org/datasets.html).

Example Methane Datasets
BAWLD-CH4 is a synthesis dataset of 
small-scale, surface-methane flux data 
in boreal and Arctic regions from 540 
wetland and non-wetland terrestrial 
sites and 1,247 aquatic sites (lakes and 
ponds) compiled from 189 studies 
(Kuhn et al. 2021). 

COSORE is a community database of 
continuous soil respiration and other 
soil-atmosphere greenhouse gas flux 
observations (Bond-Lamberty et al. 
2020).

FLUXNET-2015 is an AmeriFlux data 
product providing carbon dioxide, water, 
energy fluxes, and other meteorological 
and biological measurements from 212 
sites (over 1,500 site-years, up to and 
including 2014) at eddy covariance 
towers around the world (Pastorello 
et al. 2020).

FLUXNET-CH4 is an open-source data 
product from eddy covariance towers. 
It consists of half-hourly and daily gap-
filled and not gap-filled aggregated 
methane fluxes and meteorological 
data from 79 sites globally that span 
42 freshwater wetlands, 6 brackish and 
saline wetlands, 7 formerly drained eco-
systems, 7 rice paddy sites, 2 lakes, and 
15 uplands (Knox et al. 2019; Delwiche 
et al. 2021). This dataset was used in 
a long short-term memory network 
(LSTM) and a modified causal LSTM to 
identify the primary drivers of wetland 
methane emissions (Yuan et al. 2022). 
It was also used to create an upscaled 
product (McNicol et al. 2023).

 

FRED is a global fine-root trait database 
(roots <2mm in diameter) consisting of 
more than 150,000 observations of more 
than 330 root traits, with data collected 
from more than 1,400 data sources  
(roots.ornl.gov).

Methane Working Group, of the 
Coastal Carbon Network, aims to 
compile all methane flux data from 
continental U.S. coastal habitats (not 
mangroves) to parameterize and vali-
date process-based methane models  
(serc.si.edu/coastalcarbon/data).

TRY Database is an open global data-
set of curated plant functional traits 
(try-db.org), which are standardized and 
quality checked. This dataset integrates 
more than 700 published and unpub-
lished datasets.

ameriflux.lbl.gov/year-of-methane/year-of-methane
ameriflux.lbl.gov/year-of-methane/year-of-methane
https://ess-dive.lbl.gov
https://microbiomedata.org
https://www.ilamb.org/datasets.html
https://roots.ornl.gov
https://serc.si.edu/coastalcarbon/data
https://www.try-db.org/TryWeb/Home.php
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·  DOE’s Molecular Observation Network 
(MONet): database of molecular-level and micro-
structural information on the composition and 
structure of soil, water, resident microbial com-
munities, and biogenic emissions (see Karra et al. 
white paper, p. 108; www.emsl.pnnl.gov/monet).

·  National Science Foundation’s National Ecological 
Observatory Network (NEON): terrestrial, 
aquatic, atmospheric, and remote sensing data and 
samples (nsf.gov/news/special_reports/neon).

·  International Soil Carbon Network’s community 
platform for communicating, modeling, and 
sharing data to advance science questions related 
to soil organic matter and soil organic carbon 
(iscn.fluxdata.org).

A comprehensive effort to synthesize data would 
require collaborations with multiple agencies and 
international entities (e.g., NASA, DOE Office 
of Fossil Energy and Carbon Management, and 
United Nations International Methane Emissions 
Observatory). Examples of data product and synthesis 
needs that address the science challenges described in 
Data Gaps and Needs (see p. 27) include:

·  High-resolution historical and predictive maps 
of methane fluxes and uncertainties for different 
ecosystems, including global wetland methane 
emissions with eddy covariance and chamber 
measurement data.

· Soil flux database for methane.

·  Fine-scale maps of synthesized landscape prop-
erties, such as topography (e.g., for identifying 
peatland distribution and complex hummocks and 
hollows), water table depth, vegetation, land use, 
and land cover (including wet body extents) from 
new satellite constellations (e.g., PlanetScope and 
Hydrosat) to obtain fine spatiotemporal surface 
characteristics.

·  Synthetic database of methane-related biogeo-
chemical variables generated by mechanistic eco-
system and microbial models. 

·  Reconciled observations at different scales from 
multiple monitoring sites and synthesis of meth-
ane fluxes from eddy covariance towers, drones, 

and satellites with in situ geochemical, omics, 
and other ancillary data.  

· Synthesized dataset of anthropogenic emissions.

Challenges in Data 
Availability and Curation
Enabling reuse of existing data and creation of 
AI-ready datasets to answer new science questions 
requires (1) providing sufficient metadata outlin-
ing the purpose and methods of data collection, 
descriptions of variables and data processing, and 
data authorship and use guidelines; (2) adopting 
standardized formats for reporting metadata and 
structuring data files; (3) publishing data in open- 
access repositories that support free and fair use data 
licenses; and (4) providing connected and searchable 
infrastructure to enhance data findability (see Ch. 8: 
Computing Infrastructure, p. 49). The scientific com-
munity has recently moved toward publishing open 
data in repositories and has adopted FAIR principles, 
which improve data findability, accessibility, interop-
erability, and reusability (Wilkinson et al. 2016). This 
shift has enabled significant amounts of scientific 
data to become available for data-driven modeling 
and for comparisons between process-based and ML 
model outputs.

However, challenges remain in adopting FAIR prin-
ciples and creating data products that drive AI/ML 
models for methane cycling. First, multiscale, multi-
disciplinary datasets are spread across data repositories 
and sources (see Data Gaps and Needs, p. 27). Some of 
these are open access, such as AmeriFlux, ESS-DIVE, 
DOE Systems Biology Knowledgebase (KBase), 
NEON, NASA’s Distributed Active Archive Centers, 
NASA’s Carbon Mapper, NMDC, and GenBank, but 
others are proprietary with restricted access or differ-
ing usage policies. Furthermore, other data, such as 
fine-scale imaging data, may lack a dedicated repos-
itory and thus consistent metadata or file formats, 
resulting in fragmented datasets that are difficult to 
combine. Finally, large datasets (e.g., numerical model 
outputs) are not widely archived due to size limitations 
of data repositories, which creates a bottleneck to using 

https://www.emsl.pnnl.gov/monet
https://www.nsf.gov/news/special_reports/neon/
http://iscn.fluxdata.org
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these data to train emulator models or compare model 
performance.

Available reporting formats that enable standardized 
data and metadata reporting include:

·  AmeriFlux file format and metadata for eddy 
covariance measurements (Pastorello et al. 2020). 

·  ESS-DIVE soil respiration, amplicon, and other 
environmental data and metadata reporting 
formats (Bond-Lamberty et al. 2021; Crystal- 
Ornelas et al. 2022a).

·  Genomic Standards Consortium’s standards for 
metagenomic measurements, including MIxS, 
MIGS, MIMS, and MIMARKS (Yilmaz et al. 
2011). 

·  ESS-DIVE archiving guidelines for terrestrial 
modeling data (Simmonds et al. 2022).

·  Persistent identifiers (e.g., International Generic 
Sample Number) with relevant metadata on loca-
tions (Crystal-Ornelas et al. 2022b) and samples 
(Damerow et al. 2021) to link related datasets and 
track co-located measurements from samples split 
for different laboratory analyses. 

Ontologies or standardized vocabularies for key vari-
ables could facilitate data synthesis and comparison of 
many relevant datasets that still lack domain-specific 
reporting formats, including chamber and bubble trap 
measurements; methane-specific omics metadata; 
fine-scale imaging and synchrotron measurements; 
and monitoring, reporting, and verification (MRV) 
for tracking anthropogenic emissions. In addition, 
instituting conventions for reporting data and 
metadata for different measurements could enable 
interoperability across systems. Centralized QA/QC 
procedures that leverage ML methods (see AI-Ready 
Data Synthesis and Benchmark Products, p. 28) can 
enable consistent, scalable data pre-processing prior to 
use. Finally, data for mechanistic and ML models may 
require pre-processing, gap-filling, and uncertainty 
quantification (see Ch. 6: Data–Model Integration 
and Benchmarking, p. 39).

To accelerate the availability of reusable data, a 
broader effort among methane researchers is needed 

to encourage open data release of observational and 
modeling datasets and to adopt existing standards, 
ontologies, or develop new ones. Integrating standard-
ized workflows and enabling infrastructure (see Ch. 
7: Enabling Data and Model Exchange, p. 45; Ch. 8: 
Computing Infrastructure, p. 49) into the research and 
data collection lifecycle would also lower the barrier 
to data curation. Developing tools that make it easier 
for contributors to provide well-curated and standard-
ized data are needed. Scientific data contributors and 
managers need sufficient resources and incentives to 
support data management efforts for curation, stan-
dardization, QA/QC, pre- or post-processing, and 
publication. Finally, solutions and guidelines to archive 
model outputs, from both process and ML models, are 
needed. 

Numerical model output datasets can be large and 
grow over time and, in many cases, it will not be possi-
ble to store entire model outputs. Yet using surrogate 
models to emulate computationally expensive process 
models is growing, so sufficient amounts of simulation 
data with different parameterizations must be made 
available to train such models. Potential research ave-
nues include using data compression techniques for 
model output and techniques to identify representa-
tive model runs for archiving from a large number of 
ensemble outputs.

Enabling Data Discovery 
and Integration with 
Artificial Intelligence 
and Machine Learning
Current data discovery and integration workflows are 
typically bespoke and tailored for specific applications. 
Opportunities exist for AI and ML to enhance data 
searches, curation, and integration for Earth sciences. 
A comprehensive overview of this topic is outlined 
in the “Data Acquisition to Distribution” chapter and 
several domain-specific chapters of the AI4ESP report 
(U.S. DOE 2022). Examples of successful applications 
include anomaly detection or denoising methods 
for QA/QC (Blázquez-García et al. 2020), various 
methods for imputation (e.g., Mital et al. 2020; Ryu 
et al. 2020; Park et al. 2023), and downscaling remote 
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sensing and other spatial data to desired resolutions 
(see Ch. 6: Data–Model Integration and Benchmark-
ing, p. 39). Data integration tools like BASIN-3D 
enable more automated, on-demand synthesis of time 
series data without continual updates to data products. 
Such tools have been used to integrate data for ML 
models (Varadharajan et al. 2021).

More recent opportunities for potential explora-
tion by the data management research community 
involve large language models (LLMs) such as GPT4 
(openai.com/gpt-4) and Mistral (nlp.stanford.edu/
mistral) to augment existing metadata, enable data 
discovery and synthesis (Fernandez et al. 2023), and 
enable interrogation of data and metadata via natural 
language interfaces. These disruptive technologies have 
great potential to extract information from unstructured 
text (e.g., abstracts and publications) as well as files that 
may be structured in different ways across datasets. 

Currently, data synthesis and search across databases 
requires domain expertise to manually map data 
with different variable names, units, and collection 
methods into standardized terms. However, recent 
AI approaches have demonstrated the ability to link 
ontologies and resolve semantic differences (e.g., Toro 
et al. 2023). Such approaches can enhance data discov-
ery, particularly when paired with tools like LinkML 
(Moxon et al. 2021; linkml.io), which can describe and 
link related datasets. 

While the use of LLMs in genomics is growing (Tang 
2023 and references therein), their use in Earth sciences 
is nascent and has primarily been demonstrated for key-
word classification to improve searches (Ramachandran 
et al. 2022). Additional applications include improved 
semantic searches, automated taxonomy classification, 
and text summarization. The ultimate potential for 
LLMs is to enable knowledge discovery.

Remaining questions to be resolved regarding LLM 
application include finding the best approaches for 
model building, fine-tuning, or training and iden-
tifying architectures for augmenting LLMs with 
up-to-date knowledge (e.g., Retrieval Augmented 
Generation; Lewis et al. 2021). LLM reliability and 
trustworthiness presents an issue, with current tech-
nologies suffering from so-called “hallucinations.” 
In the BER research space, pairing LLMs with the 
model- experiment (ModEx) approach of iterative 
experimental testing is crucial to building scientific 
understanding. Improved approaches for determin-
ing LLM accuracy and mitigating potential bias are 
needed (Dentella et al. 2023). LLM use is also limited 
by the challenges identified earlier (see Challenges 
in Data Availability and Curation, p. 30), including a 
lack of benchmark datasets, inadequate standards, and 
insufficient adoption of existing standards in the Earth 
sciences. Therefore, a focus on developing tools and 
other solutions to support and incentivize data gener-
ators to adopt community formats and ontologies, as 
well as curate the data they make available (see Ch. 7: 
Enabling Data and Model Exchange, p. 45), is essential 
to advancing AI services that further accelerate data 
discovery and knowledge generation. 

Opportunities exist for AI and ML to 
enhance data searches, curation, and 

integration for Earth sciences.

https://openai.com/gpt-4
nlp.stanford.edu/mistral
nlp.stanford.edu/mistral
https://linkml.io
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E stimating methane feedbacks to the Earth system requires a predictive modeling framework for methane 
fluxes at multiple scales ranging from interacting microbial populations to continental expanses. However, 
the complexity and variability of terrestrial methane sources and sinks have long posed significant challenges 

to predictive modeling and accurate forecasting. Traditional modeling methods often struggle to capture hetero-
geneous and dynamic methane processes in terrestrial ecosystems arising from non-linear and scale-emergent 
processes, such as identifying hot spots and hot moments for methane release (Sturtevant et al. 2016). Accurately 
simulating methane fluxes also requires predicting numerous above- and below-ground processes and their com-
plex interactions. Recent artificial intelligence (AI) advances may greatly improve the capacity to model methane 
dynamics and improve quantification of contributing processes. AI can be leveraged to capture higher-order rela-
tionships among variables, which improves prediction accuracy across scales.

Advancing multiscale predictive modeling frameworks requires integrating top-down and bottom-up modeling and 
observation methods, which are markedly different for methane (see Fig. 2.1, p. 10). Top-down methods typically 
rely on atmospheric methane concentration measurements from towers, satellites, or airplanes. Inverse atmospheric 
transport modeling is then used to estimate methane fluxes, such as from wildfires, waterbodies, or wetlands. 
Given the often sparse spatial and temporal distribution of these concentration measurements, top-down methods 
constrain modeling to coarse spatial scales. Additionally, they provide only budget-level emissions estimates, from 
which it is difficult to gain mechanistic insights.

Researchers discuss simulations of watershed biogeochemistry. [Courtesy Lawrence Berkeley National Laboratory]
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In contrast, bottom-up predictions are generally driven 
by mechanistic models that may provide high spatial 
and temporal resolution for both methane emissions 
and associated processes. However, bottom-up model 
predictions often vary significantly from each other, 
likely due to large parametric and structural uncertain-
ties. Structural uncertainties stem from different mech-
anistic hypotheses, resulting in multiple possible model 
algorithms that may be used to represent the same pro-
cess. Mechanistic model structures and parameters may 
be constrained by field observations (e.g., flux chamber 
or eddy covariance), but in practice this type of model- 
data synthesis has proven difficult due to model com-
plexity and computational expense.

The current lack of efficient model-data synthesis 
methods presents a major barrier to advancing methane 
flux prediction from site to global spatial scales and 
from hourly to decadal timescales. Ideally, multiple 
observation types and scales could be assimilated into 
land- surface models simultaneously, including both 
top-down estimates and field observations. AI methods 
will likely provide advantages over traditional data 
assimilation techniques by reducing the required model 
ensemble size and enabling much faster computation. 

Data Assimilation and 
Sensitivity Analysis
AI methods may greatly accelerate data assimilation 
and overall model-experiment (ModEx) workflows. 
For example, a common method for calibrating phys-
ical model parameters is a Bayesian technique known 
as Markov Chain Monte Carlo (MCMC). In addition 
to parameter optimization, MCMC also quantifies 
parameter and prediction uncertainty given a set of 

observational constraints. MCMC typically requires 
tens of thousands or more serial model evaluations 
depending on the number of uncertain parameters 
and the complexity of model behavior. Therefore, it is 
generally computationally infeasible to apply MCMC 
directly to complex land-surface models that simulate 
methane fluxes along with many other interacting 
terrestrial processes. Instead, model surrogates may be 
developed by performing ensemble simulations in par-
allel and training AI models on the output.

Surrogate models, sometimes referred to as emulators, 
predict selected outputs of interest from the original 
model as a function of parameters or other inputs. 
They are developed by fitting functions to model 
ensembles. Traditionally, polynomial functions, radial 
basis functions, or Gaussian process models have 
been used to develop surrogates (e.g., Sargsyan et al. 
2014; Müller et al. 2015) but AI methods, like deep 
neural networks (DNNs) and long short-term mem-
ory (LSTM) networks, are also promising (see Feng 
et al. white paper, p. 106; Ricciuto et al. white paper, 
p. 95). Surrogate modeling methods with increased 
accuracy improve predictions and efficiency because 
they require a smaller ensemble of the original model. 
While effective at the point scale, traditional methods 
have struggled with developing spatially and tem-
porally resolved surrogate models, especially at high 
resolution. Dimension reduction approaches use high 
spatial and temporal autocorrelation in model outputs 
and have been successfully applied in combination 
with DNNs to generate surrogate models based on 
land-surface model ensembles (Lu and Ricciuto 2019; 
Dagon et al. 2020). Convolutional neural networks 
(CNNs) and autoencoders have the potential to fur-
ther advance these capabilities.  

Sensitivity analysis is another critically useful tool 
to quantify uncertainty, better understand model 
behavior, and guide observational campaigns (e.g., 
timing and placement of methane sensors in specific 
ecosystems). Land-surface models often contain doz-
ens, if not hundreds, of uncertain parameters and con-
straining them simultaneously is unfeasible. Instead, 
global sensitivity analysis (GSA) can identify a subset 
of uncertain model parameters that are important for 

AI methods will likely provide 
advantages over traditional data 

assimilation techniques by reducing 
the required model ensemble size and 

enabling much faster computation. 
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addressing a particular scientific question or model 
output of interest. For example, certain model param-
eters may be more sensitive during simulated periods 
of high ebullition, suggesting that measuring these 
ecosystem properties may improve prediction of such 
events. Riley et al. (2011) developed the CLM4Me 
model and computed the sensitivities of methane 
parameters, finding that they were different among 
different ecosystems.

To better understand the impact of methane parameter 
uncertainty on the Earth system, parameters must be 
analyzed in combination, including from non- methane 
processes. However, such high-dimensional GSA is 
computationally expensive and generally requires 
numerous model evaluations to determine key param-
eter sensitivities and interactions. As with model cali-
bration, surrogate modeling is highly useful in GSA.

Advancing Predictive Capabilities 
Traditional modeling approaches have a limited abil-
ity to incorporate microbial mechanisms controlling 
methane production and consumption into large-scale 
models, including Earth system models. In addition to 
the data challenges associated with large differences in 
measurement scales (see Ch. 4: Data Curation, Inte-
gration, and Products, p. 25), high computational costs 
pose challenges to capturing empirical observations, 
constraining model parameterization, and quantifying 
modeling uncertainty. Determining the level of com-
plexity needed in microbially explicit models is difficult 
and a continuing research focus (see Song white paper, 
p. 99; Xu and Rodrigues white paper, p. 80).

AI approaches offer several potential solutions:

·  Microbial Modeling. Classifier models can enable 
phenotypic predictions based on genomes, pro-
teomes, transcriptomes, metabolomes, or other 
cellular activity proxies, which can be validated 
in culturable organisms (see Chapter 3: Observa-
tions, Experiments, and Discovery, p. 19). They 
can also overcome certain scaling issues (e.g., lim-
ited knowledge of gene annotations and metabolic 
pathways) and produce higher- quality mechanistic 
models (Kavvas 2020; Bi et al. 2023; Liu et al. 

2023). These models can then improve parameter-
ization of multiscale methane models for simula-
tions within an Earth system modeling framework. 
AI approaches like artificial neural networks 
(ANNs) have been used to predict microbial com-
munity dynamics and activity (e.g., Larsen et al. 
2011). Meanwhile, researchers are exploring DNN 
methods, including LSTM, to generate surrogate 
models for integration into coarser-scale models 
(see Oh et al. white paper,  p. 74).

·  Surrogate Models. In addition to their use in 
model sensitivity analysis and calibration, surro-
gate models can replace expensive computations 
in specific parts of the model codebase. Data-
driven AI models may also replace computation-
ally complex or poorly represented processes. 
Such hybrid approaches are increasingly used in 
Earth system models, which contain subroutines 
describing different land-surface processes. The 
land model component of DOE’s Energy Exas-
cale Earth System Model (E3SM), for example, 
contains more than 200,000 lines of code in over 
100 subroutines to describe biogeochemical and 
biogeophysical processes. A DNN-based surro-
gate model for wildfire, developed by Zhu et al. 
(2022), simulates a burned area with 90% accu-
racy compared to observations and significantly 
reduces the number of model parameters. This 
model was embedded within E3SM’s Land Model 
(ELM), creating a hybrid version that includes 
both machine learning and mechanistic submod-
els. This approach may be especially valuable for 
investigating wildfire impacts on methane emis-
sions by reducing uncertainties within the wild-
fire model itself, and by enabling more detailed 
investigation of uncertainties in the mechanistic 
methane submodel. Similar approaches may be 
integrated into other multiscale modeling frame-
works, enabling the representation of fine-scale 
processes within coarse-scale land-surface models.

·  Remote Sensing and Ground-Based Observa-
tions. These measurements should be combined 
to calibrate multiscale models and to develop 
hybrid modeling approaches. For example, the 
FLUXNET database, which provides increasingly 
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rich energy, carbon dioxide, and methane flux data 
from diverse ecosystems, is already used in various 
AI approaches, such as developing reliable evapo-
transpiration predictions (ElGhawi et al. 2023). 
Knowledge-guided machine learning, a hybrid 
approach in which physical constraints and mech-
anistic response functions are incorporated into 
cost function or training, is a promising method 
for improving the predictability of methane 
cycling based on FLUXNET or other observation 
networks. While not all eddy covariance towers 
measure methane, FLUXNET-CH4 includes 
over 80 sites globally. Although global coverage is 
sparse in tropical regions, it covers boreal, temper-
ate, and Arctic regions reasonably well (Delwiche 
et al. 2021). Eddy covariance networks may be 
augmented by chamber-based measurements that 
have smaller footprints but may be more numer-
ous and better suited to capturing localized hot 
spots and hot moments. Chamber measurements 
of methane have been synthesized in several 
recent studies (e.g., Guo et al. 2023), but more 
are needed. The Continuous Soil Respiration 
(COSORE) database (Bond-Lamberty et al. 
2020), while initially developed for heterotrophic 
respiration measurements, also accommodates 
methane measurements and provides data in 
standardized formats that could be readily used 
by machine learning approaches. Satellite mea-
surements will be critical for regional scaling, 
including new launches such as MethaneSAT that 
will have the capability to estimate fluxes at high 
spatial resolution. AI can also greatly improve land 
use classification for remote sensing (Bourgeau-
Chavez et al. 2021; Rodriguez et al. 2023 ), such 
as providing more accurate areal extent of wet-
lands, peatlands, forests, and lakes.

·  Real-Time or Near-Real-Time Model Data 
Assimilation. This capability—enabled by edge 
computing, intelligent sensors, and advanced 
model-data integration techniques—can greatly 
accelerate the ModEx cycle. AI-driven models can 
guide measurements and automate experiments. 
In particular, these approaches could greatly 
increase the volume of data collected during 

sudden disturbances, extreme events, or hot spots 
and hot moments that strongly impact methane 
fluxes and occur with little lead time. Integrating 
these data into models will then improve the pre-
dictability of future events. AI approaches may also 
be applied to check for errors in data (e.g., sensor 
bias or drift) that would negatively impact model 
predictions. These approaches may be especially 
useful for capturing methane emissions from water 
bodies, which can experience dynamic fluctuations 
in size over short timescales that can contribute 
disproportionately to methane emissions (Pi et al. 
2022). A near-real-time forecasting capability was 
developed in the Spruce and Peatland Reponses 
Under Changing Environments (SPRUCE) 
whole-ecosystem warming and elevated carbon 
dioxide experiment in a northern Minnesota 
bog (Huang et al. 2019). Although information 
from this study did not directly inform sensors, 
next-generation ecosystem experiments could 
incorporate these capabilities into hardware and 
software designs.

Challenges and Opportunities 
An often-mentioned limitation to implementing 
AI-based predictive frameworks is the “black box” 
nature of the underlying approaches, and while 
machine learning model interpretation of individ-
ual processes is challenging, significant progress is 
underway. For example, LSTM networks can reveal 
the importance of driving variables and their time 
dependencies (Lu et al. 2022). The dependencies 
identified in an LSTM are based on correlations rather 
than causality, so interpretability may be limited due to 
confounding variables. However, LSTMs can be con-
strained to better infer underlying causal relationships. 
Such an approach was used to better understand and 
predict methane fluxes over different wetland types 
using FLUXNET observations (Yuan et al. 2022).

Managed systems present further challenges to model-
ing methane emissions. Processes currently parameter-
ized for natural systems perform poorly in agricultural 
areas and other managed systems. This challenge 
impedes global predictability of anthropogenic 
methane, of which a large proportion comes from rice 
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cultivation and other human management practices. 
Land management practices, such as flooding and 
draining of fields for cultivation, are therefore crucial 
to include in models. Impacts of specific management 
practices may be assessed by eddy covariance methods 
(e.g., Runkle et al. 2019) and then incorporated into 
data assimilation or hybrid approaches. Wetland drain-
ing or restoration may also strongly impact methane 
emissions. Multisector dynamics models, such as the 
Global Change Assessment Model (GCAM), can 
predict management decisions in the energy –human–
climate system as a function of climate and socio-
economic factors and are the best available tools for 
assessing different policy scenarios.

Future AI Advances
In addition to multisector dynamics models, foun-
dation models offer a promising avenue to enhance 
methane emission predictions from both natural and 
managed systems. Foundation models often comprise 
billions or even trillions of parameters, which enable 
them to encapsulate a vast amount of information 
and handle large datasets (e.g., high-resolution model 
outputs). Once trained on a diverse range of multiscale 
data, these models can be fine-tuned to specific tasks 
with smaller datasets. They may then be repurposed 
across different domains with fewer data requirements. 
Some foundation models are designed to process mul-
tiple types of data simultaneously, which can be par-
ticularly useful when integrating various data sources 
for methane prediction across scales, from chamber 
measurements to satellite imagery.

Foundation models (e.g., ClimaX) have recently been 
applied to numerical weather prediction, improving 
medium-range synoptic-scale forecasting for many 
atmospheric variables (Nguyen et al. 2023). Such 
models can accurately downscale climate model 
projections, potentially enabling better prediction 
of methane flux heterogeneity. More broadly, foun-
dation models have demonstrated an ability to gen-
eralize across tasks and domains, meaning they can 
apply knowledge learned in one context to a related 
context. These models convert input data into high- 
dimensional representations (i.e., embeddings) which 
capture intricate patterns and relationships.

Such models could be used to learn the relationships 
between climate patterns and either simulated or 
observed methane fluxes at high temporal and spatial 
resolutions. Foundation models have the capacity to 
handle large volumes of information, which would 
be needed as land-surface models rapidly advance to 
higher resolution. Some foundation models could also 
incorporate new information into their existing knowl-
edge base with minimal retraining, which would be 
vital for adapting to the evolving nature of datasets in 
real-world scenarios. Researchers and domain experts 
could interact with these models, refine outputs, and 
iteratively improve predictions. The architecture of 
foundation models, especially transformers, is inher-
ently flexible, allowing them to be adapted to a wide 
variety of tasks beyond their initial training purpose.
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6 |  Data–Model Integration 
and Benchmarking

Artist’s rendering of big data analysis using artificial intelligence. [Courtesy Adobe Stock]

N ew scientific knowledge and insights come not only from observational data but also from data integration 
with models. Such data–model integration can be accomplished in many ways, including developing data 
for model input or data-driven model training, assimilating data into models as boundary conditions or 

parametric constraints, verifying model development through data comparisons, and assessing model or multi-
model fidelity by comparing model output with observational and reanalysis datasets using comprehensive bench-
marking and diverse statistical metrics. As described in other chapters, measurement and observational data are 
required for integrating and constraining models across multiple spatial scales, from microbial and plant genomes 
to in situ ecosystem measurements, and from observations across watersheds and continents to the global scale (see 
Fig. 4.1,  p. 26). Such measurements are being collected at varying temporal scales, ranging from a single time point 
to near continuous automated sensor measurements; however, in most cases, only subsets of the collected data are 
suitable for model integration due to sampling biases, insufficient sampling frequency or density, or inadequate 
model representation of targeted processes. In addition, finding and accessing appropriate data and relevant models 
that address a given science question remain enormous challenges.

These model and data integration challenges were addressed in the AI4CH4 workshop white papers (see Appendix C, 
p. 60) and in thematic discussion sessions during the workshop. Workshop participants exchanged ideas for 
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advancing methane research through large-scale data 
analytics and data-driven modeling, complement-
ing traditional approaches as well as developing and 
applying machine learning (ML) models that rapidly 
advance the research enterprise for DOE and the 
broader science community.

Data Quality Control, 
Gap-Filling, and Synthesis
Large uncertainties associated with measurement gaps 
pose critical challenges to resolving top-down and 
bottom-up methane emissions estimates. For example, 
ground-based in situ measurements, common in inves-
tigations of methane-related processes, are often limited 
to easily accessible sampling locations and frequently 
contain temporal gaps due to technical and logistical 
issues. In addition, methane emissions measurements 
from soils, wetlands, and water bodies are available 
from a limited number of eddy covariance towers at 
wetland sites (e.g., FLUXNET-CH4; Delwiche et al. 
2021), chamber measurements, and in situ measure-
ments, and they are difficult and expensive to acquire. 
Such sampling challenges often result in missing or 
sparse hydrological, microbial, and plant trait data. 

ML approaches are commonly employed to address 
these challenges by determining the representativeness 
of measurements, designing optimal sampling net-
works (e.g., Hargrove et al. 2003; Schimel et al. 2007; 
Keller et al. 2008), filling spatial or temporal sampling 
gaps (e.g., Morin et al. 2017), and interpolating and 
extrapolating spatial and temporal data even in highly 
heterogeneous environments (e.g., Kumar et al. 2016; 
Jung et al. 2019; Irvin et al. 2021; McNicol et al. 2023; 
see Fig. 3.1, p. 20). For example, since resource and 
logistical constraints often limit the frequency and 
extent of environmental measurements of carbon 
(i.e., methane and carbon dioxide), water, and energy 
fluxes in the Arctic, Hoffman et al. (2013) used a quan-
titative statistical methodology to stratify sampling 
domains. This approach informed sampling site selec-
tion and determined the representativeness of sites and 
networks across Alaska. In turn, the results informed 
future sampling site selection and maximized sampling 
across critical environmental gradients. 

Using a similar technique, Pallandt et al. (2022) 
quantified the representativeness of a network of 
pan-Arctic eddy covariance sites to optimize planning 
for future network enhancements. One unique com-
ponent of their optimization analysis was that some 
of the sites measured carbon dioxide in addition to 
methane fluxes, and some sites collected data only 
during the summer season rather than the entire year. 
Such operational inconsistencies must be considered 
in any comprehensive assessment of measurement 
representativeness.

To upscale FLUXNET eddy covariance observations 
of carbon dioxide, water, and energy fluxes to the 
global scale, Jung et al. (2011) used a ML technique 
called model tree ensembles (MTE). They trained 
MTE to predict site-level gross primary productiv-
ity, terrestrial ecosystem respiration, net ecosystem 
exchange, latent energy, and sensible heat based 
on vegetation indices, climate and meteorological 
data, and land use information. A similar approach 
could be applied to extrapolate methane fluxes to the 
global scale. 

To integrate soil organic carbon (SOC) measurements 
across 2,374 soil profiles in the northern circumpolar 
region and to produce a spatially extant map of SOC, 
Mishra et al. (2020) combined multiple ML methods 
(i.e., gradient boosting machine, multi-narrative adap-
tive regression spline, support vector machine, and 
random forests). The researchers found that an ensem-
ble prediction approach (see “Types of AI” sidebar, 
p. 3) employing multiple ML methods usually offered 
better predictions of observed SOC spatial variation, 
which strongly correlated with methane emissions in 
wet regions, than any single method alone.

Data Assimilation and 
Hybrid Modeling
A lack of long time-series methane emissions data lim-
its the ability to initialize and run data-driven models 
using data assimilation approaches. Disparate data at 
different scales are stored at different data centers in 
different ways, creating challenges for data integration 
and synthesis (see Ch. 4: Data Curation, Integration, 
and Products, p. 25). However, new measurements and 
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compilations of existing data (e.g., FLUXNET-CH4) 
could drive development of data-driven models and 
improve understanding of key processes and controls 
in the global methane cycle. 

To characterize the performance of global fresh water 
wetland methane emissions models, Zhang et al. 
(2023) applied a wavelet spectral analysis to iden-
tify the dominant time scales contributing to model 
uncertainty in the frequency domain. They developed 
a Monte Carlo approach to incorporate flux obser-
vation error to avoid misidentification of time scales 
that dominate model error. Among their results, they 
showed that most models could capture methane 
variability at monthly and seasonal time scales for 
boreal and Arctic tundra wetland sites, but the models 
contain significant variability bias at seasonal time 
scales for temperate and tropical/subtropical sites. 
The work suggests a need to accurately replicate fresh-
water wetland methane flux variability, especially at 
short time scales, in future wetland methane model 
developments. 

Yuan et al. (2022) used causality-guided ML to iden-
tify the importance of soil temperature across different 
wetland types. They captured a lagged response to eco-
system respiration and gross primary productivity in a 
subset of these wetland types and identified the impor-
tance of these factors in driving methane emissions at 
the sub-seasonal scale. 

McNicol et al (2023) developed a six-predictor, 
random- forest, upscaling ML model (UpCH4) trained 
on 119 site-years of eddy covariance methane flux 
data from 43 wetland sites in the FLUXNET-CH4 
Community Product to demonstrate model skill in 
producing realistic extra-tropical wetland methane 
emissions estimates. Such estimates will improve 
with more flux data. Near-term, essential sources of 
additional data will come from new satellite constella-
tions, such as PlanetScope (planet.com) and Hydrosat 
(hydrosat.com), which provide very fine spatiotempo-
ral surface characteristics (e.g., Moon et al. 2022).

Another challenge lies in connecting microbial 
community information to model-relevant func-
tional information (e.g., metabolic rates). Most 

sequence-based datasets (e.g., 16S ribosomal RNA 
sequences, meta genomes, metatranscriptomes) 
provide information only about relative abundances 
of genes and organisms, not absolute abundances, 
making it infeasible to tease out complex microbe–
environment relationships. Metagenomic, and espe-
cially metatranscriptomic, data paired with methane 
measurements are rare. Many more 16S datasets are 
available, but accurately predicting function and activ-
ity from these data presents a sizable challenge (Øyås 
et al. 2024; see Ch. 2: State of the Science, p. 9). 

Data platforms, such as the DOE Systems Biology 
Knowledgebase (KBase), that combine genomic data-
bases with analysis tools to compare genomes and con-
struct genome-enabled models (GEMs) of microbes 
and microbial communities can facilitate develop-
ment of both testable hypotheses and ML models of 
genotype–phenotype–environment relationships. 
After validation of these models in laboratory and 
field settings, they may serve as surrogates of complex 
biology in larger- scale models (see Ch. 5: Multiscale 
Modeling, p. 33).

Methane cycle process models could be enhanced by 
including ML-based parameterizations to produce 
hybrid models that combine process-based algorithms 
with ML-based modules. Such hybrid models can 
improve accuracy over traditional process-based mod-
els, and they consistently yield better performance on 
modern supercomputers. A hierarchy of hybrid models 
that employ common application programming inter-
faces (APIs) could enable reuse and interoperability of 
simulation code.

Model Benchmarking 
and Analysis
Growing model complexity, particularly with hybrid 
models, necessitates new methods for characteriz-
ing model performance and suitability. A systematic 
approach is needed to identify strengths and weak-
nesses of both process-based and ML models and to 
continuously verify that new model algorithms pro-
duce desired results (Randerson et al. 2009). Multi-
model comparisons with observational data products, 
often called model benchmarking, provide useful 

https://www.planet.com
https://www.hydrosat.com
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information about which combinations of process 
representations yield better performance with respect 
to observational reference data. Model benchmarking 
tools, such as the International Land Model Bench-
marking package (see Fig. 6.1, p. 43), have proven 
useful for characterizing model functionality and 
reproducibility, relative model performance, and fidel-
ity of new model versions (Collier et al. 2018). 

Model benchmarking and traditional analysis tech-
niques are leveraging technology advances to improve 
scientific productivity. Interactive analysis of model 
output and observational data are increasingly per-
formed with Python or R languages in Jupyter Note-
books, often on JupyterHub nodes co-located with 
storage systems that host and manage increasing data 
volumes. Commercial cloud vendors have helped 
propel this approach to data science, and cloud-based 
data storage technologies and dynamic provisioning of 
computational capacity are materializing even in tradi-
tional high-performance computing centers, including 
those operated for DOE.

Advancing Understanding of 
the Methane Cycle Using AI/ML
Achieving new insights into integrated process under-
standing across BER’s research enterprises requires 
advancing infrastructure that enables aggressive use 
of both large data and complex models. Relevant pro-
cesses operate at scales from the genome to the global 
Earth system, spanning at least 12 orders of magnitude. 

New artificial intelligence (AI) and ML technologies, 
including large language models and foundation mod-
els, combined with new computational and storage 
infrastructure, offer opportunities to significantly 
advance information harvesting from data, drive mod-
els directly with data, and conduct very-large-scale 
data analytics. Creating new synthesized benchmark 
datasets for ML model training is crucial to enabling 
further progress in methane-related research. Such 
datasets should include long time-series measure-
ments of methane fluxes from tropical and subtropical 
wetlands, genomic characteristics of methanogens 
across global wetlands, and globally distributed eddy 
covariance measurements of methane and related envi-
ronmental drivers (e.g., meteorology and site charac-
terization data). Associating microbial characteristics 
with functional responses will enable creation of new 
microbially explicit soil–carbon dynamics models that 
can underlie simulation experiments for the entire 
globe, and characterize microbial responses to climate 
change that will play a large role in future atmospheric 
methane levels and climate feedbacks. 

Realizing these improvements to data and model 
accessibility will require a foundation of integrated 
research infrastructure (i.e., both hardware and soft-
ware) for data management, AI/ML model building, 
simulation, and analysis at scale (see Ch. 8: Comput-
ing Infrastructure, p. 49). Similar investments in eco-
system- and smaller- scale experiments will be needed 
to fill data gaps.
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Fig. 6.1. A Tool for Intercomparing Complex Models with Data. This example portrait plot from the International Land 
Model Benchmarking (ILAMB) model-data intercomparison and integration package compares the performance of two gener-
ations of nine land surface models (labeled at top of each column) used in the fifth (left) and sixth (right) phases of the Coupled 
Model Intercomparison Project (CMIP5 and CMIP6), as well as the mean of the CMIP5 and CMIP6 models, for multiple variables 
and functional relationships (rows). Such comparisons characterize model functionality and reproducibility, relative perfor-
mance, and fidelity of new model versions. [Courtesy of the RUBISCO Science Focus Area, www.ilamb.org/CMIP5v6/historical]

www.ilamb.org/CMIP5v6/historical/
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7 |  Enhancing Data and 
Model Exchange

T he need to exchange data and models more broadly and equitably is not new but increasing application of 
data- and compute-intensive artificial intelligence (AI) makes it both more pressing and challenging. Par-
ticipants at the AI4CH4 workshop discussed increasing the availability and usability of data and models for 

a diverse set of researchers. Specifically, they believed a mechanism is needed to support data and model sharing, 
discovery, and reuse across three communities: researchers outside of existing networks, researchers across scien-
tific domains, and experimentalists and modelers. The reasons behind the current lack of connections across these 
communities differ, but the approaches proposed in the workshop to resolve these challenges are similar in terms 
of incentives and infrastructure needs.

Global Problems Require Global Communities
Like many research challenges across interdisciplinary ecology and biogeochemistry fields, the availability of 
bottom-up observational methane data, and thus model representation, is heavily biased toward North America 
and western Europe (Delwiche et al. 2021). A lack of methane data in many other parts of the world prevents 
the research community from drawing conclusions about globally consequential issues like the global methane 
budget. This data gap also represents a significant deficit in diversity, equity, inclusion, and accessibility in science 
(Dwivedi et al. 2022). 

Researchers inspect an eddy covariance flux tower at Billy Frank Jr. Nisqually National Wildlife Refuge. [Courtesy AmeriFlux]
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The scientific community often must draw global 
conclusions based on incomplete databases wherein 
valuable data and mechanistic insights from poorly 
represented regions are missing. For example, a spatial 
representativeness analysis of the FLUXNET-CH4 
database suggests a lack of bottom-up methane data 
from the humid tropics, where wetland methane 
emissions could be very high (Delwiche et al. 2021; 
McNicol et al. 2023), suggesting that we lack a truly 
global database and bottom-up estimate for wetland 
methane. AI approaches can help mitigate such data 
gaps and potential biases that might result, especially 
with continued exploration of improved gap-filling and 
upscaling models to estimate methane in undersam-
pled areas (Irvin et al. 2021; McNicol et al. 2023; see 
Chu et al. white paper, p. 77; Feng et al. white paper, 
p. 106; Ricciuto et al. white paper, p. 95; Sihi white 
paper, p. 104). However, these issues ultimately require 
developing the data exchange community.

An urgent community development need for exchang-
ing data is deliberate and meaningful inclusion of, 
and capacity-building for, researchers outside North 
America and western Europe (Adame 2021). One 
example approach is the Integrated Coordinated Open 
Networked (ICON) science principles (Goldman 
et al. 2022). The ICON approach, supported by the 
ICON Science Cooperative (pnnl.gov/projects/
icon-science) aims to use interdisciplinary integration, 
coordinated methods, an open research lifecycle, and 
broad engagement to develop science that is trans-
ferable across systems and mutually beneficial with a 
range of interested parties. Another example is groups 
working on the “Western data-bias problem” in other 
biogeosciences fields have identified solutions employ-
ing a people-centric approach focused on training and 

workshops, infrastructure and capacity building, top-
down incentives (e.g., funding-based) for data sharing, 
and data-sharing support (Dwivedi et al. 2022; Todd-
Brown et al. 2022). Under this approach, methane data 
from the humid tropics may exist, but local researchers 
may not have the time, resources, or incentives to 
share these data with international networks. Thus, in 
underrepresented regions, methane data collection 
and modeling could be prioritized and efforts to build 
communities through a people-centric and capacity- 
building approach should be supported. 

Supporting Underrepresented 
Researchers Locally 
The lack of time, resources, or incentives for data shar-
ing experienced by members of the global community 
are also felt locally and oftentimes more acutely by 
underrepresented and underfunded U.S. researchers. 
Like many members of the global community, these 
researchers are also more likely to be missing from 
established networks. Available training; workshops; 
data-sharing support; explicit data management plan 
requirements, such as those in BER funding oppor-
tunity announcements; and accountability regard-
ing findable, accessible, interop erable, and reusable 
(FAIR) data principles can promote uniform adoption 
of metadata standards and improve data accessibility 
by and for all users. These efforts would be further 
aided by funding to enable underrepresented research-
ers to curate and publish data in accordance with FAIR 
principles. However, given the limited breadth of U.S. 
funding agencies, these efforts are unlikely to achieve 
extensive global impact. 

A more universal approach to improving access to 
quality data and metadata that meets community 
standards is to incorporate data curation steps into 
the research process itself. This could be achieved 
through a community resource that provides access to 
advanced analysis and modeling tools, as well as the 
compute power to run them. Training opportunities 
and outreach at all stages of development are essential 
to promoting broad use and buy-in. This approach 
provides immediate and meaningful enhancements 
to the productivity of individual research efforts and 

A lack of methane data in many other 
parts of the world prevents the research 

community from drawing conclusions 
about globally consequential issues like 

the global methane budget.

https://www.pnnl.gov/projects/icon-science
https://www.pnnl.gov/projects/icon-science
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collectively increases the availability of quality data to 
the community.

BER’s investment in the National Microbiome Data 
Collaborative (NMDC) infrastructure, specifically the 
Champions Program within NMDC, exemplifies this 
sort of community engagement, training, and support. 
NMDC Champions are members of the microbiome 
research community, some of whom focus on the 
methane cycle (e.g., methane production and oxida-
tion pathways) and other carbon, nutrient, and oxida-
tion/reduction-related pathways that interact with and 
affect methane flux (see Ch. 2: State of the Science, 
p. 9). This program provides a means of community 
feedback on NMDC data curation, data management, 
and other core activities. Furthermore, Champions 
promote NMDC and share content and opportu-
nities with collaborators and the broader research 
community.

Bridging Research 
Across Domains
Understanding the methane cycle requires incor-
porating cross-domain knowledge. This includes 
understanding the physiology of microbes that have 
roles in the methane cycle and the physicochemical 
environmental conditions that influence their distribu-
tion, activity, and, ultimately, their impacts (see Ch. 2: 
State of the Science, p. 9). For example, model sensi-
tivity analysis has shown the importance of capturing 
microbial biology in ecosystem-scale models (Song 
et al. 2020; Ricciuto et al. 2021; Sihi et al. 2021) and 
that biological understanding of methanogens and 
methanotrophs can be advanced by understanding 
the environmental context in which microbes operate. 
Similarly, plants play an important role in the transport 
and release of methane. Understanding plant physi-
ology (especially the role of aerenchyma) and inter-
actions with the environment is critical for predictive 
modeling, which can provide insight on how traits may 
influence plant distribution and productivity.

Cross-domain research faces many of the same com-
munication and professional network challenges 
that confront researchers outside existing networks. 
Indeed, awareness of available data, analysis tools, 

workflows, and models is prerequisite to their findabil-
ity and accessibility. This awareness becomes particu-
larly challenging when research topics span traditional 
disciplinary and current funding boundaries; as profes-
sional networks become sparse, so too does knowledge 
of existing resources. 

Researchers working with data outside their domain 
(i.e., non-domain experts) also face challenges in how 
to process data and verify its quality. One example 
is the use of genomic data in larger-scale models. 
Although genomic information is readily available 
through multiple biologically focused repositories, 
environmental researchers may struggle to find and 
access these data. They may also face challenges in 
interpreting quality information within sequencing 
data files or navigating the bioinformatic workflows 
needed to process sequencing data into information 
useful for larger-scale studies (e.g., community com-
position or functional potential). These researchers 
could benefit from better availability of data products 
(e.g., community or functional abundance tables) and 
from interactions with interdisciplinary scientists who 
offer different backgrounds, understanding, and exper-
tise. Additional metadata documentation, including 
standardized metadata that facilitates an assessment 
of whether datasets can be combined, could help 
guide cross-domain researchers to develop improved 
or focused understanding of the data themselves, and 
ultimately increase data reusability. 

Facilitating Experimentalist–
Modeler Exchange
The model-experiment (ModEx) approach adopted 
by BER’s Earth and Environmental Systems Sciences 
Division provides a framework that facilitates interac-
tions between experimentalists and modelers. Regular 
exposure and interaction among researchers with 
different epistemologies helps build trust and leverage 
their complementary approaches to knowledge devel-
opment. ModEx provides modelers with a voice on 
data generation by experimentalists and experimental-
ists with input on model structures necessary to cap-
ture understanding of the modeled system. However, 
forging new relationships and learning to communi-
cate takes time, and the small overlap in professional 
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networks may result in non-optimal pairing of models 
with research questions. 

The challenges of exchange between experimen-
talists and modelers are heightened when overlaid 
with differences in scientific domain. The capacity to 
model connections between micro- and larger-scale 
process rates (see Ch. 2: State of the Science,  p. 9) is 
a scientific challenge affected by the ability of mod-
elers to find and use quality data in their model of 
interest. A particular challenge highlighted in this 
workshop and related white papers is incorporating 
microbiological data into larger-scale models (Xu 
et al. 2015; Sihi et al. 2021). In this case, models from 
the environmental domain require data collected 
from experiments and observations in the biological 
domain. This example requires exchange of informa-
tion across two sets of language and epistemological 
barriers (experimentalist- modeler and biological- 
environmental) while also crossing traditional funding 
boundaries.

A consistent need of modelers (also highlighted at the 
AI4ESP workshop) is accessible and model-ready data 
(U.S. DOE 2022). This need is magnified in data-driven 
models that have high data input requirements and are 
more strongly affected by data quality. A platform that 
provides model-ready data could incentivize modelers 
to contribute modeling tools, which can likewise incen-
tivize experimentalists to provide their data in a stan-
dardized, model-ready format. A platform providing 

searchable models and model-ready data also broadens 
the options available to both modelers and experimen-
talists by effectively enlarging the network of research-
ers with which they interact, leading to more optimal 
pairing of research questions with models.

Envisioning a 
Community Platform
A community platform for methane cycle research, 
available to and informed by all, that provides data, 
analysis, modeling tools, and compute resources 
can help address challenges by creating a globally 
accessible incentive for contributing high-quality 
data and modeling and analysis tools. This platform 
would advance the ModEx concept (see “Adapting the 
ModEx Framework to AI Models” sidebar, p. 4) by 
facilitating interactions among experimentalists and 
modelers and uniting a broader community through 
common goals. Trust could be developed through user 
interfaces that enable experimentalists with less mod-
eling exposure to directly interact with and explore 
stable models and model components. Trust could 
also grow by implementing automated tracking and 
attribution of data and analytical tools used across 
the platform. The platform could serve as a commu-
nity resource that incorporates a wider range of data 
and delivers it to a broader community. It could thus 
expand the advantageous impact of ModEx, perhaps 
introducing the concept into domains like biology 
where it has not yet been formalized.
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8 | Computing Infrastructure

Workshop discussions revealed broad consensus that artificial intelligence (AI) has great potential to advance 
understanding of the methane cycle, which itself represents a valuable use case for understanding AI’s 
potential for Earth systems predictability and for strategies to realize that potential. This chapter highlights 

computing infrastructure investment opportunities to reach these goals, going beyond clear demands for increased 
processing power, data storage, and networking capacities to include software infrastructure, user-centric design, 
and organizational and cross-organizational processes and policies.

Fundamentally, realizing AI’s potential to advance BER science and address questions regarding the methane 
cycle, greenhouse gasses, or any other BER-relevant topic requires a comprehensive and seamlessly interoperating 
system of capabilities to accelerate the model-experiment (ModEx) cycle and other AI-based capabilities. New 
demands on infrastructure resources will arise from AI’s diverse integration of observation and simulation data, 
ability to facilitate data exploration and interrogation, tremendous processing power, and straightforward manipu-
lation of large datasets.

Investing in a Comprehensive, Connective Approach
Given rapid progress in AI capabilities, infrastructure tailoring is urgently needed to realize the technology’s full 
potential. While traditional findable, accessible, interoperable, and reusable (FAIR) data resources will continue to 
be centrally important, investment is needed in connective infrastructure that encapsulates multiple data resources 
and provides streamlined, unified access to a much larger research community. Such infrastructure would enable 

Aurora supercomputer at Argonne National Laboratory. [Courtesy Argonne National Laboratory]
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critical objectives detailed throughout this report. 
Efforts toward this comprehensive system approach 
to infrastructure investments should consider both 
advancing the ModEx framework and user-centric 
design and experience.

Advancing the ModEx framework
A key investment challenge is developing infrastruc-
ture that accelerates an AI-enhanced ModEx cycle and 
other AI-based capabilities. Many of the high-priority 
capabilities discussed during the workshop will require 
multiple iterations to prototype and then turn into 
useful products. Specific capabilities related to enhanc-
ing understanding of local to global methane cycling 
involve speeding up ModEx integration, such as by 
automating the collection and gap-filling of data from 
physical observations and experiments (see Ch. 3: 
Observations, Experiments, and Discovery, p. 19), 
parameterizing models against observed data, assim-
ilating data, and conducting model evaluation and 
sensitivity analyses (see Ch. 5: Multiscale Modeling, 
p. 33 and Ch. 6: Data–Model Integration and Bench-
marking, p. 39). Projects in critical areas, such as accel-
erating ModEx across the microbial-ecosystem-global 
spectrum, upscaling from fine-scale to large-scale envi-
ronmental data, or building workflows with resources 
that cross agencies and national boundaries will likely 
need additional iterations of design and prototyping to 
be successful. Even for purely modeling-based studies, 
many current ModEx loops are manual and slow, 
requiring prohibitive expenditures in labor, computa-
tion, and data transfer and engineering (see “Adapting 
the ModEx Framework to AI Models” sidebar, p. 4). 

Additional challenges associated with accelerating 
the development and deployment of AI-enhanced 
capabilities are those analogous to the challenges of 
realizing FAIR data (Wilkinson et al. 2016; go-fair.org/
fair-principles). The value of FAIR data is limited not 
only by the cumulative effect of barriers to FAIRness 
but also by the weakest link in any of the four FAIR 
measures. Every barrier to a FAIR measure decreases 
the overall value of a given dataset, but the value drops 
to zero if just one of the four measures fails to be at 
least partially achieved. 

In the case of AI, critical needs analogous to the FAIR 
measures go beyond data and metadata FAIRness to 
include compute resources, simulation capabilities, 
AI/machine learning (ML) capabilities, and workflow 
capabilities. AI adds new terminology like data hygiene 
and cleaning, which are applicable to FAIR data princi-
ples and raise the visibility of data quality as a dimen-
sion of reusability. Although BER’s data resources 
(i.e., infrastructure for FAIR data) are distinct from the 
above needs for AI, BER’s progress in resolving FAIR 
data challenges demonstrates its capability to meet 
analogously complex AI challenges.

Emphasizing User-Centric 
Design and Experience
The focus on accelerating the ModEx cycle and other 
AI-based capabilities highlights an important theme 
across the workshop discussions: the computational 
and data infrastructure required to implement 
AI-based solutions to address methane cycle questions 
must be easy to use and modify. Practically speaking, 
this means that different infrastructure elements must 
be tailored to specific domains, data, and computer 
scientists. Thus, user-centric design, design thinking, 
and user experience/user interface (UX/UI) expertise 
could be high-impact opportunities if included in all 
infrastructure investments throughout project life-
cycles, including planning, prototyping, testing, com-
munity engagement, and training and support. 

Maximizing Existing Technologies
Existing infrastructure technologies have the potential 
to meet the needs and opportunities outlined in this 
report. They include: (1) compute and networking 
resources, (2) FAIR data resources, and (3) scientific 
workflows.

Compute and Networking Resources
Many potentially high-impact AI applications dis-
cussed during the workshop involve tying together 
currently disconnected datasets; harmonizing, 
completing, and otherwise transforming data; and 
connecting data and models. Infrastructure roles 
include software and systems that facilitate these tasks 
but are not specific to a particular dataset or type. 

http://www.go-fair.org/fair-principles/
http://www.go-fair.org/fair-principles/
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Subject- specific, non-infrastructure roles are discussed 
in other sections of this report. Diverse aspects of 
advancing AI to study the methane cycle necessitate an 
infrastructure that can support large amounts of data 
at many scales and modes of bioscience and Earth sci-
ence data. Among the opportunities and challenges to 
realizing such infrastructure are the following:

·  Training AI models, especially foundation models, 
requires vast amounts of computing resources.

·  Traditional data assimilation models (e.g., ensem-
ble Kalman filters) are computationally expensive.

·  Many, if not most, processes in the methane 
cycle possess aleatoric and epistemic uncertain-
ties. This situation requires sizable AI model 
ensembles to quantify uncertainties or analyze 
sensitivities. In addition, AI model ensembles 
require substantially greater compute resources 
than non- ensemble approaches, but they enable 
thorough calibration of and trust in AI-based and 
AI- enhanced models.

·  Training AI models requires increased data re- 
usability and, in turn, computing capacity. Such 
increases will continue to accelerate as communi-
ties deploy large language models and generative 
AI to explore and curate data and metadata. Such 
deployments will make data, models, and work-
flows more FAIR to non-domain experts.

·  As standardized workflows enhance nonspecialist 
access to existing knowledge, data, and models, 
demand for computing resources will rise 
correspondingly.

·  Access to significant computing resources can 
dramatically facilitate use of proprietary data, 
presenting both challenges and opportunities. 
For example, to address privacy concerns, BER 
could establish agreements permitting learning on 
encrypted data, although it is more computation-
ally expensive than learning on unencrypted data.

·  The availability of adequate computing resources 
can accelerate scientific discovery by enabling 
model-guided, small-scale experiments. However, 
domain science researchers must be free to use 
the resources without having to manage capacity 

constraints (e.g., compute, storage, or network) via 
standardized workflows.

·  Anticipated improvements in simulation-based 
models will further increase computing needs and 
costs. For example, multiscale modeling advances 
are needed, such as incorporating (1) microbial 
models into larger-scale (and expensive) envi-
ronmental models and (2) uncertainty quan-
tification methods into both fine-scale and 
large-scale models.

·  Advanced Scientific Computing Research 
(ASCR) is deploying exascale systems at its 
high-performance computing (HPC) centers: 
Argonne Leadership Computing Facility, Oak 
Ridge Leadership Computing Facility, and 
National Energy Research Scientific Computing 
Center. Collectively, the capabilities at these facil-
ities represent a vast compute resource equipped 
with state-of-the-art AI hardware, but access to 
the facilities is unevenly applied in terms of users, 
scale of access (node or core hours), and annual or 
semiannual peer review processes. Similarly, differ-
ent BER user facilities, such as the Environmental 
Molecular Sciences Laboratory and Atmospheric 
Radiation Measurement (ARM) user facility, 
manage their own computing resources and data 
environments, which also have different modes 
of access.

To realize AI’s potential, network and storage resources 
and their management are essential considerations 
during strategy development and planning. First, net-
work bandwidth can be overwhelmed by exponential 
growth in the size of data streams from field sensors, 
laboratory instruments, observational imaging, and 
simulations (e.g., large ensembles of climate simulation 
results or regional-scale simulations under multiple 
scenarios). Network and storage investments will yield 
maximum benefit if designed for long-term scalabil-
ity based on current trends. Second, improving data 
FAIRness and data connectivity, as well as democratiz-
ing standardized workflows, will increase data transfer 
needs substantially. These increased needs are partic-
ularly important for enabling and encouraging the use 
of more datasets in model training efforts across more 
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institutions. Third, drones and other autonomous or 
semi-autonomous sensor platforms (e.g., for measuring 
methane fluxes) provide additional challenges for the 
communication infrastructure.

As discussed in the Emerging Technology Develop-
ment section (see p. 55), emerging technologies such 
as edge computing, low-power computing, and 5G 
networks offer important opportunities to mitigate 
associated burdens on networking and compute needs. 
More generally, ASCR’s Energy Sciences Network 
(ESnet) and planned upgrades provide world-class 
capacity among key research sites around the world, 
specifically for DOE national laboratories and scien-
tific user facilities. ESnet also offers excellent pairing 
connectivity to the networks and compute resources 
of public cloud service providers. Furthermore, ESnet 
ambassadors, located at each national laboratory and 
user facility, ensure high-quality responsiveness to 
challenges, issues, and needs. Finally, as discussed in 
the Scientific Workflows section (see  p. 53), network 
infrastructure burdens due to these factors can be 
significantly alleviated by deploying workflow man-
agement capabilities that minimize data transfer, mov-
ing compute capabilities to the data rather than the 
traditional approach of moving data to the compute 
capabilities.

FAIR Data Resources
To accelerate ModEx cycles, researchers require 
instantaneous access to scalable computing resources. 
The value of these resources is maximized when access 
is seamless in both effort and start-up time and when 
scale-up barriers are minimized. BER has already made 
substantial and reasonably comprehensive investments 
in FAIR data resources, including the Environmental 
System Science Data Infrastructure for a Virtual Eco-
system (ESS-DIVE), Earth System Grid Federation 
(ESGF), National Microbiome Data Collaborative 
(NMDC), DataONE network, and National Virtual 
Climate Laboratory. 

Reflecting the success of these investments, work-
shop discussions focused on the positive impacts of 
increasing the usability and reusability of existing 
data. Such investments could, for instance, emphasize 

building additional infrastructure around these exist-
ing resources to facilitate connectivity; advance FAIR 
principles, especially for nonexpert users; and expand 
the number of data resources available to the commu-
nity. In an idealized future, web portals could employ 
a high-quality user-centric design that enables self- 
service access to relevant data from multiple resources, 
including AI- enhanced recommendation capabilities.

An emerging complement to FAIR data infrastructure 
is providing compute resources alongside data. This 
could mean partnering with large computing resources 
to decrease data transfer (or to “bring the compute to 
the data”). This approach is especially important to 
consider given the: (1) large amounts of data needed 
to train a single AI model, (2) envisioned growth in 
the number of AI models that scientists train, and 
(3) increased data reusability in training AI models. 
Such infrastructure, which may be partially supplied 
by workflow capabilities (see Scientific Workflows,  
p. 53), improves the availability of data and models to 
diverse users and accelerates knowledge transfer.

Many studies of the methane cycle need, or would 
benefit from, seamless access to data distributed across 
multiple resources. Given the diversity of data sources, 
integration across institutions to support a federated 
data access policy would enable each data resource 
owner to maintain key autonomy while benefiting 
from the collective. Federated structures could also 
facilitate agreements that enable the community to 
leverage proprietary data; emerging technologies for 
learning on encrypted data may lower barriers even 
further (see Emerging Technology Development, 
p. 55). Common practice has been to build unified 
data portals, but the increasing complexity of the 
data landscape is driving a shift toward interoperating 
resources powered by a distributed metadata search 

To accelerate ModEx cycles, 
researchers require instantaneous 

access to scalable computing resources. 
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and application programming interfaces (APIs) for 
data access. Such investments could then enable 
AI-aided approaches to data harmonization.

The need for standardized metadata surfaced repeat-
edly in workshop discussions, especially in the context 
of genomics data collected for the study of methane 
cycling, and represents an essential component of the 
consensus view that investments must enhance capa-
bilities that leverage existing knowledge. Tools to man-
age and connect metadata schema could therefore be 
invaluable, especially given that many DOE mission–
science questions involve mechanisms and processes 
that bridge gaps in organizational and domain science 
knowledge (e.g., among roots, the rhizosphere, micro-
bial communities, soil structure, and other physical 
and geochemical data). 

Although different research subfields may have meta-
data schema for individual topics (e.g., rhizosphere 
microbes), barriers to connecting these datasets 
persist. Innovations in methods and deployment of 
software that facilitates prototyping and testing differ-
ent connections between multiple metadata schemas 
would be valuable. Also potentially useful are systems 
that distribute metadata across partnering sites. Gaps 
exist in researchers’ ability to perform comprehensive, 
multisite searches without needing to master different 
data resources. A common software platform equipped 
with access APIs could be useful in this regard. Other 
computing capabilities, including simulation codes, 
trained AI/ML models, and computational workflows, 
could be supported with FAIR principles akin to 
observational data or simulation output data (Wilkin-
son et al. 2016; Goble et al. 2020; see Scientific Work-
flows, this page).

Scientific Workflows
Scientific workflow capabilities represent a core 
infrastructure element supporting AI’s potential for 
understanding the methane cycle. Workflows play a 
central role in bridging computational, experimental, 
and observational research and represent a critical 
enabling technology for embedding AI throughout 
BER research. Cutting-edge data-driven studies are 
expected to increasingly require resource integration 

along a computing continuum, from edge to local 
(i.e., on premise), cloud resources, and ASCR HPC 
centers. Currently, tools and systems that enable easy 
leveraging of fully autonomous or self-driving sensing 
and experimental systems are lacking. 

Workflow capabilities also lower barriers to interdis-
ciplinary collaboration on grand challenges and offer 
solutions to research bottlenecks, such as bidirectional 
linking between biological data and environmental 
models. As such, workflows are a key component of 
AI infrastructure. Overall, the community needs better 
tools to facilitate the exploration, development, refine-
ment, and distribution of such solutions.

The impacts of AI workflow infrastructure are compa-
rable in significance to the impacts of infrastructures 
that democratized data and HPC. Public data resources 
supporting FAIR principles accelerated research by 
enabling researchers anywhere to access large, diverse 
datasets without personal or professional connections. 
In HPC, standards for parallel programming accel-
erated research by enabling scientists to share and 
compare large-scale, high-performance algorithms 
and computations using different HPC resources. 
This advance freed computational scientists from hav-
ing to re-implement each algorithm on their parallel 
hardware. In the era of AI and AI-enhanced ModEx, 
scientific productivity would be enhanced if workflow 
development, dissemination, and sustainability were 
similarly facilitated, freeing scientists from the tedious 
and error-prone manual labor of connecting available 
data and compute with the tools they need.

Supporting Workflows
In the past decade, the research community has made 
substantial progress on computational, communica-
tion, ownership, and provenance challenges facing 
development and support of scientific workflows (e.g., 
da Silva et al. 2021, Pegasus, PARSL, funcX). Other 
core technologies facilitating workflows include low-
code and no-code environments and standardizing 
containers (e.g., Docker, Singularity/Apptainer, Shifter 
for HPC, and Advanced Terrestrial Simulator).

Workshop discussions highlighted applications with 
important workflow uses: 
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·  Standardizing methane observation data pipelines 
using workflow platforms improves quality control, 
which is important for upscaling (Hu et al. 2022). 

·  Combining chamber and tower methane flux data 
increases spatial data points for global flux upscal-
ing, which is valuable due to the disparity in the 
number of chamber flux sites compared to towers. 

·  Developing workflows to reduce barriers to cre-
ating data products can include, for example, 
capabilities for automating inclusion of new data; 
testing different approaches to resolve incon-
sistencies in data reporting; providing flexible, 
on- demand gap-filling; conducting large-scale 
sensitivity analyses in complex systems; and using 
high-resolution surrogate models for upscaling.  

·  Examples of scientific workflows that integrate 
uncertainty quantification with bridging across 
scales include nowcasts of methane emissions fea-
turing uncertainty arising from area fluctuations, 
and high-resolution regional- to global-scale maps 
of methane fluxes and uncertainties under histori-
cal (i.e., reanalysis) and future scenarios. 

·  Developing better workflow capabilities can 
improve coordination and execution between 
sensing devices and computing, yielding new 
approaches to data collection and advancing 
domain science by optimally informing under-
lying models (e.g., supporting active learning to 
identify optimal measurement locations).

·  Creating reproducible workflows greatly facilitates 
assessments related to policies, such as reservoir 
management (e.g., effects of drawdown timing) 
and the current and future roles of croplands in 
methane production and consumption. Policy 
and semiautonomous data-collection applications 
provide an additional motivation for investing in 
robust workflow capabilities. Namely, they are 
important for understanding which algorithms 
and execution methods meet particular needs, 
such as response time or resiliency.

·  Workflows enhance access to verification and 
model updating because they facilitate repetition 
of model training on complete and distributed 
datasets.

·  Developing trust in AI requires running various 
models in sync, which is more easily performed 
with standardized workflows. A comprehensive 
workflow ecosystem also helps standardize pro-
cedures and best practices on data calibration and 
quality control/quality assurance that may be 
performed at the edge or offline, while critically 
preserving flexibility for site-specific or sponsor- 
specific needs. 

·  Building pipelines in which new measurements, 
especially time-resolved measurements, can auto-
matically trigger model updates are important 
workflow features (e.g., waterbody area measure-
ments and methane uncertainty models or data 
assimilation workflows that use remote-sensing data 
pipelines as a basis for Bayesian sensitivity analysis). 

·  Lowering barriers to productive AI application 
can be achieved using workflows, whether for 
model- data integration, ModEx, or other pur-
poses, especially in conjunction with easy mecha-
nisms for searching and using data across multiple 
sites and agencies. A specific computing example 
involves opportunities afforded by relatively 
well-developed areas of AI technology, such as 2D 
and 3D image analysis and processing. 

Workflow Impacts
With respect to data harmonization, improved work-
flow tools can increase data reusability for training 
AI models, enhance capabilities to leverage existing 
knowledge in any digital form, facilitate AI-aided 
approaches to enhance data harmonization, and 
support metadata standardization. In combination 
with new data collection technologies, distributed 
workflows facilitate flexible, high-resolution sampling 
as well as high-throughput laboratory-scale data gen-
eration for model training. Workflows leveraging dis-
tributed sensor networks, autonomous platforms, and 
edge computing (see Emerging Technology Devel-
opment, p. 55) may benefit from additional specific 
infrastructure.

An important accessibility gap impacted by work-
flows will be the transfer of insights through mod-
els and data, especially across the biological and 
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environmental sciences which are both needed to 
understand the methane cycle. This need is especially 
clear for multiscale modeling. Workflow capabilities 
accelerate the research design-build-test-learn (DBTL) 
cycle for building new modeling capabilities because 
they facilitate rapid testing of ideas through proto-
typing. Workshop examples included approaches for 
improving model performance through data assimi-
lation, identifying and resolving key parameters and 
structural uncertainties, developing and evaluating 
surrogate models, integrating surrogate models with 
physics-based models, and incorporating human 
dimensions into numerical and AI models.

Finally, the impacts of workflow infrastructure on 
community development should not be underesti-
mated. Workshop participants highlighted needs for 
making data and models available to diverse sets of 
users; easily providing compute alongside data; and 
developing a multidisciplinary workforce with shared 
baseline fluency in distributed data, metadata tools, 
and workflow development and use. 

Emerging Technology 
Development
This section highlights opportunities for infrastructure 
research where the feasibility of delivering production- 
grade systems is not yet well understood. Examples 
include developing automated or semi-automated 
infrastructure for sensing, edge computing, and wire-
less technologies which may be of interest to DOE’s 
ASCR program or to BER and ASCR jointly.

AI promises synergies with emerging approaches, 
including edge computing and multiple new sens-
ing systems, and offers critical new opportunities to 
address data gaps and accelerate model improvements. 
Compared to delivering a high-performance AI ecosys-
tem using current technologies, integrating emerging 
technologies in high-impact applications presents 
distinct challenges. However, these challenges can be 
mitigated through investments that simultaneously 
advance the capability and understanding of how to 
embed the capability into practice. This strategy is 
especially important given AI’s rapid progress. 

Computer science investments will be important 
for addressing knowledge gaps in the integration of 
experiments with HPC and cloud computing with 
scientific workflow resilience. Similarly, but at a smaller 
scale, computer science and mathematics research can 
advance edge computing capabilities for automating 
data collection and inference. For instance, depending 
on the scale of computing capability in edge devices, 
the connected sensing devices may be able to switch 
between passive sensing, active, and smart modes (e.g., 
autonomous responses to anomaly detection). In this 
space, DOE investments in co-design create opportu-
nities for powerful edge computing capabilities that 
deliver high-fidelity AI models while using very little 
power or network bandwidth.

One area of potential shared interest between ASCR 
and BER involves rapidly prototyping and interrogat-
ing modified schema or algorithms that harmonize 
metadata. Approaches are needed given the impor-
tance of standardizing metadata under uncertainty 
(i.e., evolving scientific understanding), the possi-
bilities for AI to accelerate metadata harmonization 
and completion, and the increased prevalence of 
large, distributed datasets. Another needed approach 
involves efficiently exploring distributed data prior to 
use in compute-intensive workflows. 

To address challenges associated with integrating 
AI with data federations across institutional bound-
aries, ASCR and other agencies have already begun 
investing in mathematics and algorithms to address 
long standing challenges in accessing proprietary data. 
Examples include federated learning (i.e., learning 
in a distributed sense) and learning on encrypted 

AI promises synergies with emerging 
approaches, including edge computing 

and multiple new sensing systems, 
and offers critical new opportunities 
to address data gaps and accelerate 

model improvements.  
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data. Cyberphysical systems and workflows represent 
another important opportunity. Workshop discus-
sions highlighted the potential of autonomous labo-
ratory and field sensor systems to address critical data 
needs, such as through flexible but high-resolution 
sampling. Shared interests in applied mathematics 
and computational needs for multiscale models are 
discussed significantly in Ch. 5: Multiscale Model-
ing (see Advancing Predictive Capabilities,  p. 35) 
and represent an area of ongoing shared investments 
through, for example, the DOE Scientific Discovery 
through Advanced Computing (SciDAC) Partnerships 
program.

Key opportunities in emerging computing and net-
working technologies include:

·  Field-based sensors that leverage next-generation 
5G networks and are equipped with pre-trained 

AI models to identify anomalies or change 
their behavior according to predefined rules or 
simulation- based model predictions.

·  Extreme-scale storage of large ensembles of cli-
mate simulation results or regional-scale simu-
lations under multiple scenarios, which include 
specific outputs related to the methane cycle.

·  Edge computing to enhance experimental and 
sampling design at scales ranging from laboratory 
to field.

·  Workforce development is an important space for 
shared investments for early-career researchers 
from diverse backgrounds to work fluently within 
an integrated infrastructure.
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Appendix A

Agenda
Artificial Intelligence for the Methane Cycle (AI4CH4) Workshop Series

March 3
12:00–12:20 p.m.  Workshop introduction and charge
12:20–1:50 p.m.  Brief presentations highlighting gaps and opportunities
1:50–2:15 p.m.  Group Q&A
2:15–2:45 p.m.  Break 
2:45–4:40 p.m.  Breakouts for participant introductions and ideation
4:40–5:00 p.m.  Report back to full group

March 10

12:00–2:15 p.m.  “Improving Predictions from Fundamental Microbiology” Discussion Section
2:15–2:45 p.m.  Break
2:45–5:00 p.m.  “Environmental Controls and Empirical Relationships” Discussion Section

March 17

12:00–2:15 p.m.  “Targeting Field Measurements and Observations” Discussion Section
2:15–2:45 p.m.  Break
2:45–5:00 p.m.  “Data-Model Integration” Discussion Section

March 24

12:00–2:15 p.m.  “Multiscale Modeling” Discussion Section
2:15–2:45 p.m.  Break
2:45–5:00 p.m.  Breakout by session topic for workshop synthesis and report drafting

Topics for Each Discussion Session

· Knowledge gaps and scientific questions
· Characteristics and challenges of specific data and models
· Related algorithms, infrastructure, and their potential to address gaps
· New observations, measurements, and experimental design needed
· Data products (QC, UQ, harmonization, benchmarks) needed
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Purpose
A joint Biological Systems Science Division and Earth and Environmental Systems Sciences Division workshop series will be 
held to advance predictive understanding of the methane cycle, with explicit consideration of the role of advanced statistical 
approaches [including artificial intelligence (AI) and machine learning (ML)], federated data resources, smart sensors, and 
distributed continuum computing. This workshop will bring together a diverse group of researchers across career stages, 
including members of the methane modeling and measurement/observation communities and subject matter experts from 
the larger computational ML, hardware/software co-design, edge systems, and networking/communications communities. 
A particular emphasis of this workshop is bridging the gap in research knowledge across scales, utilizing new approaches 
across scales with an emphasis on biological and environmental scientific domains. The purpose of this announcement is to 
solicit white papers from the scientific community that focus on the methane cycle and/or development and application of 
advanced computational methodologies, including AI and ML. White papers will be used to guide the workshop planning 
and invitations.

Structure of White Papers
White papers should be prepared using the following outline and may be up to a maximum of 2 pages long (12-point font, not 
including the optional References sections).

1. Title

2. Authors/Affiliations: List in order of largest contribution

3. Focal Area(s): One or two sentences only; see last paragraph for list

4. Science or Technological Challenge: Short statement describing the area addressed by the white paper

5. Rationale: Description of the research needs/gaps, the barriers to progress, and the justification for and benefits associated 
with the proposed approach

6. Narrative: Brief scientific and technical description of the scientific objective or approach; activities that will advance the 
science; and specific field, laboratory, model, synthesis, and/or analysis examples

7. References (Optional)

Authors are limited to one submission as lead author but may participate as a co-author in other submissions. Teaming is 
encouraged to reduce the reviewing workload. Multi-institutional responses are welcome; however, a clear lead who can 
speak authoritatively on the white paper contents should be identified. [Note: Protected information should not be included 
in white papers, but instead should be shared directly with the appropriate U.S. Department of Energy (DOE) program man-
ager(s).]

U.S. Department of Energy, Office of Science, Biological and Environmental Research Program

Artificial Intelligence for the Methane Cycle (AI4CH4) Workshop Series

Appendix C

White Papers
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Submission Process
White papers must be submitted as PDF files by 5:00 p.m. EST on 17 February, 2023, using this Google Form. After the com-
pletion of the workshop, white papers will be posted publicly through the AI4ESP workshop website (www.ai4esp.org/related).

Background
A particular interest within the DOE Office of Science’s Biological and Environmental Research (BER) program is the carbon 
cycle. This cycle includes the stocks and fluxes of carbon in its various forms throughout the biosphere, as well as its impact 
on both biological systems behavior and climate. Methane is an important component of the carbon cycle, with 20-30 times 
the radiative forcing of carbon dioxide. Methane enters the atmosphere via several natural and anthropogenic sources, and 
methane cycling has been of intense interest to the Earth science community. Despite this, there are large uncertainties in 
land-atmosphere exchange estimates of methane in global models, due in part to high spatial and temporal variability of these 
fluxes and related processes. This variability has many causes, including: environmental sensitivity of the microorganisms, the 
importance of interactions among species for both production and consumption processes, the importance of abiotic pro-
cesses in mediating release, and biotic and abiotic barriers to flow. Additionally, these uncertainties are affected by the sparsity 
of process-relevant environmental data, differences in measurement approaches and frequencies across a wide range of scales, 
and uncertainty in the measurements themselves.

The recent BER-ASCR Artificial Intelligence for Earth System Predictability (AI4ESP) virtual workshop series, held during 
October and December 2021, identified next-generation capabilities “to more radically and aggressively advance prediction 
capabilities in the climate, Earth, and environmental sciences through the use of modern data analytics and artificial intelli-
gence.” Many of these approaches may be applicable to the data and modeling challenges relevant for developing a predictive 
understanding of the methane cycle across scales with potential contributions to predictive understanding of both the 
biological and environmental components of the methane cycle. For example, deep learning algorithms, surrogate models, 
and multi-fidelity hybrid (ML and process) models have the potential to address challenges with both scaling and heteroge-
neity of microbial processes. AI-enabled technologies can be used to obtain automated measurements of methane flux and 
process rates to better capture the high spatiotemporal variability of methane release and flux and process response to lab 
and field manipulations, including those mimicking extreme events. Causal inference and information theory coupled with 
AI approaches, may help enable a deeper understanding of microbial and biogeochemical drivers of the methane cycle. To 
achieve these gains, there is a need to have accessible and synthesized datasets capturing various aspects of the methane cycle 
across scales.

Call for White Papers
White papers should be framed around one or more of the following focal areas:

•  Key uncertainties and knowledge gaps where new methodology, infrastructure, or technology can advance predictive 
understanding of the methane cycle. This advance can be realized within a scientific domain, across domains, or in model 
improvements.

•  A solution to a key challenge in implementing AI approaches (e.g., improving uncertainty quantification, federated learn-
ing) across the biological and environmental science domains as it pertains to the methane cycle.

•  The importance of high-potential datasets (e.g., genomics or other omics data, eddy covariance networks, remote sensing) 
or how the combination of data across spatial or temporal scales or scientific domains may lead to new scientific insights, 
either within or across fields. Where relevant, white papers should highlight how advanced statistical and numerical meth-
ods can be used to realize this insight. How automated or real-time data capture and processing or federated learning can 
be used to address issues of spatial and temporal heterogeneity and sparsity (e.g., through improvements in measurement 
coverage or uncertainty quantification).

•  Approaches that support the transfer of knowledge gained in the laboratory to make predictions in the field and vice versa.

https://docs.google.com/forms/d/e/1FAIpQLSeSVPK7f2pqFCcj9CFdlfpFCZ8ijdSeXsTjlcL98pYItmkDGg/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSeSVPK7f2pqFCcj9CFdlfpFCZ8ijdSeXsTjlcL98pYItmkDGg/viewform?usp=sf_link
www.ai4esp.org/related
www.ai4esp.org/related
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Focal Areas
•  Key uncertainties and knowledge gaps where new 

methodology, infrastructure, or technology can advance 
predictive understanding of the methane cycle. 

•  The importance of high-potential datasets or how the 
combination of data across spatial or temporal scales or 
scientific domains may lead to new scientific insights.

Science or Technological 
Challenge
Wetland CH4 emissions result from production sources 
and oxidation sinks that are controlled by different micro-
bial groups (i.e., methanogens and methanotrophs). These 
production and oxidation rates have different dynamics and 
exhibit a wide range of responses to environmental changes. 
The net emissions also depend on transport processes (e.g., 
aerencnyma, ebullition, diffusion). However, ecosystem- 
scale long-term observations (e.g., FLUXNET-CH4; 
Delwiche et al. 2021) only measure net CH4 emissions, 
which hinders predictive understanding of wetland CH4 
emissions across space and time.

A robust flux partitioning algorithm is urgently needed 
to decompose observed net emissions into gross produc-
tion and oxidation rates. Such new datasets can be used to 
improve predictions of future wetland CH4 emissions as 
well as spatial upscaling across heterogeneous landscapes.

Rationale
Wetland CH4 emissions represent ~20% to 30% of global 
CH4 emissions, and these emissions are increasing due to 
ongoing climate warming because the radiative power of 

Partitioning Net Wetland CH4 Emissions into Production 
and Oxidation Components Using Ecosystem-Scale Flux 
Measurements and Physically Guided Machine Learning

CH4 is ~30 times stronger than CO2 over a 100-year time 
horizon. Classic approaches to estimate wetland CH4 emis-
sions used either process-based bottom-up (BU) models 
that directly simulated wetland biogeochemical processes 
or top-down (TD) transport models that indirectly inferred 
wetland CH4 emissions based on atmospheric CH4 concen-
trations. Existing BU modeling studies showed some prog-
ress in capturing the observed CH4 emissions at a handful 
of FLUXENT-CH4 sites after careful calibration. However, 
BU models still suffer from large parametric uncertainty and 
use incomplete biogeochemical theories. Furthermore, TD 
models often use prior information derived from BU model 
estimates and other non-wetland surface CH4 emissions that 
inevitably introduce uncertainties. The most recent Global 
Carbon Project methane budget revealed ~30 TgCH4 
discrepancies in the magnitude, inter-annual variability, and 
long-term trends of BU and TD model estimates of wetland 
CH4 budgets.

The ongoing synthesis efforts at FLUXNET-CH4 sites pro-
vide useful data to parameterize BU models. However, the 
net CH4 emissions from the FLUXNET-CH4 dataset do not 
provide sufficient constraints on the CH4 biogeochemical 
cycle.

Minimally, a BU model requires methane gross production 
and oxidation rates to constrain methanogenesis and metha-
notrophic processes, respectively. Thus, developing a robust 
partitioning algorithm for FLUXNET-CH4 CH4 emissions 
becomes a critical research need to improve process under-
standing and model predictability of wetland CH4 cycle.

Narrative
Our overall objective is to robustly partition observed 
FLUXNET-CH4 net CH4 emissions into production 
sources and oxidation sinks using physically guided 
machine learning (PGML). We will leverage the existing 
FLUXNET-CH4 dataset (Delwiche et al. 2021) and new 
wetland sites in South America to generate global datasets of 
wetland CH4 production and oxidation rates. Although the 
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measurements of CH4 emissions are far fewer than those of 
CO2 fluxes, we expect to overcome this data limitation by 
developing an advanced PGML model. Unlike traditional 
machine learning, which depends entirely on the informa-
tion content of a big dataset, PGML can combine physical 
principles and ecological theory to leverage the information 
contained in a more limited dataset to understand and pre-
dict the dynamics of target processes. Our previous work on 
PGML has demonstrated promising model performance at 
temperate and high-latitude wetland sites (Yuan et al. 2022). 
In our previous version of PGML, we have successfully 
integrated causal knowledge of how CH4 emissions interact 
with physical and biological factors. Here, we will further 
develop the PGML model to include (1) distinct tempera-

ture sensitivities of methanogens and methanotrophs in our 
PGML model, (2) pretraining with synthetic data from a 
more mechanistic microbial model, and (3) constraints on 
model structure based on the knowledge of methane process 
interactions.

References
Delwiche, K. B., et al. 2021. “FLUXNET-CH4: A Global, Multi-Ecosystem 
Dataset and Analysis of Methane Seasonality from Freshwater Wetlands,” 
Earth System Science Data 13(7), 3607–89.

Yuan, K., et al. 2022. “Causality Guided Machine Learning Model on 
Wetland CH4 Emissions Across Global Wetlands,” Agricultural and Forest 
Meteorology 324, 109115. DOI:10.1016/j.agrformet.2022.109115.
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Focal Areas
•  Key uncertainties and knowledge gaps where new 

methodology, infrastructure, or technology can advance 
predictive understanding of the methane cycle.

•  The importance of high-potential datasets or how the 
combination of data across spatial or temporal scales or 
scientific domains may lead to new scientific insights.

Science or Technological 
Challenge
Wetland CH4 emissions involve many nonlinear and 
asynchronous processes, which can be affected by multiple 
environmental and biological factors. Despite promising 
performance demonstrated by traditional machine learning 
(ML) models, confounding variables often confuse tradi-
tional correlation-based ML models to miscapture domi-
nant drivers, thus, leading to large uncertainties in model 
extrapolation.

Due to the complex nature of wetland methane, the magni-
tude of CH4 emissions—as well as its responses to envi-
ronmental and biological factors—have shown large spatial 
heterogeneous characteristics, implying that extensive site 
observations are needed to constrain the upscaling models 
and, thus, yield reliable gridded CH4 estimations. However, 
the current data-driven ML-based wetland CH4 emis-
sion products are limited by data availability, especially in 
high-emission areas (such as tropical areas, and wetland hot 
spots in the boreal Arctic area).

Therefore, a more advanced ML model that can be robustly 
trained by existing datasets and more in situ observations 
is urgently needed to generate a reliable global wetland 
methane emission dataset. Such upscaled datasets can be 
used for benchmarking the bottom-up biogeochemistry and 
top-down atmospheric inversion models, and also can be 

Upscaling Global Wetland Methane Emissions 
with Causality Guided Machine Learning

used to analyze the long-term trend and variations of wet-
land emissions across different regions in the world.

Rationale
Methane is one of the most important global warming 
contributors after CO2 with a Global Warming Potential 
(GWP) 28–34 times that of CO2 over a 100-year time 
horizon (IPCC 2013). Wetlands are the largest natural 
source of global CH4, contributing 20% to 30% to global 
CH4, and remaining the most uncertain natural CH4 source 
to the atmosphere (Saunois et al. 2020). Due to the limited 
understanding of wetland CH4 emission processes and lack 
of observations to constrain models, large discrepancies 
still exist among bottom-up models and top-down mod-
els (Saunois et al. 2020). In addition, there is no widely 
accepted global benchmarking data product for wetland 
CH4 emissions to evaluate, parameterize, and improve both 
bottom-up and top-down models. Hence, a reliable data-
driven benchmark dataset of global wetland CH4 emissions 
is urgently needed.

Data-driven, ML-based, gridded CH4 emission datasets 
upscaled from in situ observations play an increasingly 
important role in benchmarking bottom-up and top-down 
models. However, most currently used ML models for CH4 
upscaling ignore the long-term dependences (between 
CH4 emission and its drivers), and such correlation-based 
ML models may misidentify dominant drivers with wrong 
processes. Besides, lack of observation constraint, especially 
in high-emission areas, results in considerable uncertainties. 
Therefore, improvement of current ML upscaling models 
and collection of sufficient multisourced observations are 
both needed to generate a reliable global wetland CH4 
upscaling dataset.

Narrative
Our objective is to generate a global wetland CH4 flux 
emission dataset using a causality-guided ML model. To 
achieve this, we will compile a comprehensive wetland 
CH4 emission observation dataset with ~140 and ~180 
site years of eddy covariance and chamber measurements, 
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which will broadly cover both hotspot and nonhotspot 
regions across the world. Then, a physically interpretable 
and causality- guided machine learning (causal-ML) model 
will be built based on our previous work (Yuan et al. 2022), 
which indicated that our causal-ML model can correctly 
capture the causal relationships between CH4 emission and 
its drivers and achieve high prediction accuracy. Using the 
upscaled dataset, we will benchmark the performance of 
bottom-up and top-down models, which participated in a 
recent global carbon project analysis, and further investigate 
the predominant drivers which regulate the long-term trend 
and variability of wetland CH4 emissions.

References
Intergovernmental Panel on Climate Change. 2013. “Ch. 6: Carbon and 
Other Biogeochemical Cycles.” In Climate Change 2013 The Physical Science 
Basis. Cambridge University Press, Cambridge, U.K.
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Yuan, K., et al. 2022. “Causality Guided Machine Learning Model on 
Wetland CH4 Emissions Across Global Wetlands,” Agricultural and Forest 
Meteorology 324, 109115.
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Fig. 1. To accelerate the automated data-driven feedback 
necessary for future scientific discovery, it is necessary to 
harness distributed scientific workflows that execute on 
continuum computing ecosystems and that meet cost bud-
gets, time deadlines, and resiliency requirements.

Nathan Tallent, Steven Spurgeon 

Pacific Northwest National Laboratory

Focal Areas
•  Knowledge gaps in methodology and infrastructure for 

workflow execution.

•  Challenges implementing AI approaches for automating 
feedback to scientists or instruments.

Science or Technological 
Challenge
Future scientific discovery requires automating data-driven 
feed- back to scientists or instruments to handle the full 
array of data generated by modern hardware, rapidly make 
decisions, and extrapolate beyond limits of any one exper-
imental dataset. Examples range from automating analysis 
from simulations, sensors, and AI-driven models to forming 
real-time loops that can guide instruments or automate 
experiments, such as high-resolution analysis of material and 
chemical systems (Akers et al. 2021; Olszta et al. 2022). To 
achieve new levels of automation with machine reasoning, 
we must harness distributed scientific workflows that can 
exploit continuum computing ecosystems to meet both 
cost budgets and quality of service, i.e., response-time and 
resiliency.

A related need is unsupervised learning, required because of 
the infeasibility of labeling, which usually requires mas-
sively distributed training and substantial computational 
resources. The task of scientific discovery is often ill-suited 
to transfer learning approaches, which may lack generaliz-
ability to accurately describe or assess new experimental 
features.

We envision coordinated teams of domain scientists and 
computer scientists that design workflows to meet budget 
and quality of service requirements. Domain scientists 
would establish context by defining the domain challenges 
that represent fundamental limitations imposed by current 
computing solutions. Computer scientists leverage frame-
works for co-design of cost, response time, and resiliency 
to guide workflow executions that combine multisystem 
resources, especially near-instrument computing, facility 

Cloud and HPC Ecosystems for Scientific Experiments

HPC, and cloud (see Fig. 1). Cloud can complement DOE 
computing beyond on-demand scale-out because it now 
drives computing trends by showcasing novel systems 
(quantum), new platforms (TPUs), system virtualization 
(containers, serverless), and machine learning frameworks 
(PyTorch, TensorFlow).

Rationale
Today’s tools naively execute workflows on multiple sys-
tems. Customizing data movement and resiliency is critical 
to meet time constraints but must be done manually—a 
cumbersome and error-prone process. Cloud’s Function-as-
a-Service (FaaS) model is attractive for cost and availabil-
ity but has not been designed for meeting workflow time 
constraints.

Meeting cost, response-time, and resiliency raises funda-
mental research challenges. Costs in cloud vary widely based 
on service (static instance vs. stateless container), hardware, 
and availability-resiliency guarantees. The execution time 
of workflow tasks not only depends on partitioning and 
assignment, but on prioritizing task vs. data movement, 
data layouts, data movement schedules, and data caching 
and consistency policies. Task resiliency is usually inversely 
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related to time. Even worse, it is usually implicit and fixed, 
and within workflows results in redundant recovery efforts. 
Further, workflows can change resiliency semantics (e.g., 
“final answer” tasks still need checkpointing) but “explor-
atory tasks” can use best-effort. Finally, workflows that vary 
with input and time require dynamically adaptive policies.

Vision. There is a critical need for automated co-design 
techniques that can address the following questions:

•  Given a target budget and quality of service, what is the 
best selection of resources across facility, cloud, and edge 
(near- instrument) resources to create a virtual platform? 

•  What is the best assignment of policies for task place-
ment, data movement, and task resiliency? 

•  Given a set of fixed resources and optional target budget, 
what is the range of pareto-optimal execution policies and 
their corresponding tradeoffs?

Narrative
Our approach is to develop transferable co-design tech-
niques and tools within the four thrust areas below. We 
target workflows for rapid scientific exploration; most 
are input/output (I/O) intensive and coordinated with 
workflow managers. The co-design framework reasons about 
the cost-time tradeoff space for policies that meet given 
constraints.

Workflow-guided characterization of performance and 
resiliency to develop models that drive co-design. To 
reason about co-design tradeoffs, we develop workflow- 
specific models of data lifecycles and resiliency relative to 
key workflow parameters. We use distributed and scalable 
workflow introspection within I/O middleware to capture 
data lifecycles between workflow tasks (Suetterlein et al. 
2019; Friese et al. 2020; Kilic et al. 2022).

Coordination and resource partitioning for cloud and HPC 
ecosystems. To meet cost and quality of service constraints 
in Cloud and HPC Ecosystems, we will efficiently map 
tasks to execution policies and multi-system resources 
(Suetterlein et al. 2019). The scheduler compares predic-
tions of task performance with execution dynamics and, if 
necessary, adopts recommended alternatives.

Optimizing I/O middleware using customized perfor-
mance and resiliency policies. To avoid I/O bottlenecks 
and improve data velocity, we ensure careful task and data 
placement and explore customized I/O middleware policies.

Optimizing emerging cloud execution models. We 
propose retaining the attractive properties of FaaS execution 
but avoiding its overheads. We explore customized workflow 
performance and resiliency configurations that avoid this 
overhead.
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Focal Areas
•  Key uncertainties and knowledge gaps where new 

methodology, infrastructure, or technology can advance 
predictive understanding of the methane cycle.

•  A solution to a key challenge in implementing AI 
approaches (e.g., improving uncertainty quantification, 
federated learning) across the biological and environmen-
tal science domains as it pertains to the methane cycle.

Science or Technological 
Challenge
Global CH4 emissions are dominated by biogenic sources 
resulting from the interplay between production by 
methanogens and consumption by methanotrophs. While 
process-based models exist and have been applied for a long 
time, they frequently fail to accurately capture the response 
of net CH4 emissions to variations in environmental 
factors such as temperature, moisture, and pH. The explicit 
representation of microbial dynamics has been suggested 
to improve these models. However, determining how much 
complexity should be represented in these microbial models 
is difficult because both CH4 production and oxidation are 
carried out by diverse groups of microbes that interact and 
compete with each other. Trait-based modeling approaches 
have been proposed to represent the diversity of microbes 
within a microbial community and their effects on CH4 bio-
geochemistry. However, this approach becomes challenging 
due to the large computational costs for parameterization 
when more microbes are represented. Moreover, the high 
computational costs make it challenging to incorporate 
empirical observations, constrain model parameterization, 
and quantify modeling uncertainty conditioned on current 
knowledge in measurements and modeling.

Rationale
The high computational costs associated with trait-based 
models are largely due to the high computing cost of the 

Accelerated Trait-Based Modeling of Biogenic Methane 
Dynamics Using Physics-Guided Machine Learning

numerical solvers used to integrate the differential equa-
tions over space and time. This high computational cost, 
in turn, makes the process of improving model parameter-
ization through model-data fusion more challenging, as it 
often requires numerous iterations of calibration with large 
ensemble simulations. Machine learning (ML) has demon-
strated the potential to significantly speed up forward model 
simulations in areas such as weather and climate modeling 
and computational fluid dynamics (e.g., Scher and Messor 
2019; Weyn et al. 2019; Kochkov et al. 2021). By creating 
high-fidelity surrogates of trait-based models using ML, we 
can accelerate both forward and calibration simulations, 
allowing for efficient quantification and reduction of para-
metric uncertainties. Furthermore, the ease of computing 
derivatives with respect to parameters makes it easier to 
fine-tune the ML-based surrogate models by incorporat-
ing a wider range of data. Finally, by building surrogates of 
trait-based models with different levels of complexity, we 
can quantify the relationship between model complexity 
and predictive uncertainty, and determine the optimal level 
of model complexity needed to predict future biogenic CH4 
dynamics.

Narrative
Our objective is to create a framework that combines (1) a 
synthetic database of CH4-related biochemical variables 
generated by the microbial modules of EcoSIM [the land 
model being developed for BioEPIC, originally based on 
ecosys (Grant et al. 2017)] with varying levels of parame-
terization complexity in microbial dynamics; (2) machine 
learning surrogates trained using simulations from each 
complexity configuration; and (3) a model-data fusion 
framework that incorporates various observations to refine 
model parameters through the surrogates. To maintain 
interpretability, we will use a physics-guided machine 
learning approach, as demonstrated in our recent studies 
(Liu et al. 2022; Yuan et al. 2022). By repeatedly integrating 
these three components, we can continuously improve the 
microbial module of EcoSIM and its surrogates and assess 
the impact of observations on model predictions. Finally, 
the resulting observationally constrained surrogates will 
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be used for ensemble extrapolation in various scenarios, 
quantifying uncertainty across different levels of complexity 
and determining the optimal complexity for robust CH4 
dynamics predictions.
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Focal Area
The focal area of this white paper is the importance of inte-
grating high-potential datasets including soil genomic data, 
eddy covariance flux data, and remotely sensed flux data 
across spatial and temporal scales.

Science or Technological 
Challenge
It remains a challenge to develop a mechanistic and pre-
dictive model of methane fluxes across space and time that 
accurately predicts how fluxes respond to environmental 
changes and that could be used to develop and assess emis-
sion management strategies. Such a model must incorporate 
microbial metabolic and ecological processes occurring 
at local scales that ultimately scale up to landscape-level 
methane fluxes.

Rationale
Understanding microbial community taxonomic and func-
tional composition has greatly increased our understanding 
of landscape-scale methane emission patterns across 
environmental gradients, yet predicting fluxes and how they 
respond to environmental change remains a major challenge 
(He et al. 2015; Hartman et al. 2017). Across the salinity 
gradient in the San Francisco Estuary, we used metage-
nomic sequencing to elucidate the involvement of multiple 
microbial functional guilds and decomposition processes 
that drove methane emissions that were highest in oligoha-
line wetlands but otherwise declined with increasing salinity 
(Hartman et al. 2023). A combination of metagenomic and 
metabolomic data also revealed halophilic methanogens 
contributing to the increased methane emissions observed 
in unrestored hypersaline salterns, a potential role for 
methane production by methylphosphonate- scavenging 
bacteria, and altered microbial community composition 
associated with lowered emissions after hydrologic resto-

Integrating Genomic and Flux Data to Develop 
Predictive Models for Managing Methane Emissions

ration (Hartman et al. 2023). However, in a recent synthesis 
of methane flux and microbial data from coastal wetlands 
from four different sites across a wide geographic range, 
there were few consistencies in methane/salinity relation-
ships and the variables driving them. Similar paired flux and 
microbial data from a greater number of sites would enable 
us to directly assess which environmental and microbial 
variables drive discrepancies among observed fluxes and 
environmental characteristics. This, in turn, could help 
predict the impact of changes in ecosystem management, 
restoration, or other interventions.

Narrative
A greater degree of integration between genomic and other 
omic data with methane flux data is needed at expanded 
spatial and temporal scales. A great deal of relevant data 
exist or are being generated, including land- and satellite- 
based methane monitoring data (e.g., Ameriflux and 
MethaneSAT), and metagenomic and metatranscriptomic 
data from soils and sediments [e.g., Integrated Microbial 
Genomes and Microbiomes database (Chen et al. 2021) 
and National Microbiome Data Collaborative], but have 
not been exploited to identify microbial- methane linkages. 
We propose leveraging these datasets, along with meta-
data repositories such as the Genomes OnLine Database 
(Mukherjee et al. 2021) and relevant ontologies to iden-
tify the environments, organisms, and metabolic path-
ways driving global methane emissions. One challenge in 
synthesizing these data is a lack of consistent metadata and 
paired microbial/methane measurements. We propose more 
soil sampling and microbial DNA sequencing efforts to be 
paired with already established methane monitoring efforts 
such as eddy covariance flux towers, especially in areas 
where such data are lacking, and the data integrated into 
appropriate repositories. Once enough data are generated 
from many sites, an analysis that synthesizes the data across 
sites and tests hypotheses about environmental/methane/
microbial relationships would also benefit from machine 
learning techniques. Such techniques may include super-
vised machine learning models such as random forests, gra-
dient boosting, support vector machines, ridge regression, 
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and neural networks, or unsupervised methods (Ghannam 
and Techtmann 2021). These techniques will help reveal 
patterns in highly complex datasets comprising thousands of 
microbial taxa. Ultimately, these data could help develop a 
model of the methane cycle that explicitly includes micro-
bial processes, similar to what has been done previously 
with soil carbon, arid ecosystems, and other climate models 
(Collins et al. 2008; Singh et al. 2010; Todd-Brown et al. 
2012; Wieder et al. 2013). The model could then be used 
to help understand which interventions, out of a variety 
of different options (Valach et al. 2021), would lead to the 
greatest reductions in methane emissions.
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Focal Areas
•  Uncovering key uncertainties and knowledge gaps for 

predictive understanding of the methane cycle.

•  Automated/real-time data capture to improve uncer-
tainty quantification.

Science or Technological 
Challenge
Quantifying global methane emissions from lakes and reser-
voirs (hereafter referred to as waterbodies) is challenged both 
by (1) uncertainty in areal flux rates and (2) uncertainty in 
the distribution and magnitude of total waterbody area. This 
white paper is concerned with constraining estimates of the 
latter and propagating its associated uncertainties to global 
methane emissions calculations. To do this, we propose creat-
ing a data pipeline for retrieving time-resolved measurements 
of waterbody area and using these to update a methane uncer-
tainty model, the architecture of which we describe below.

Rationale
Because we do not have a complete real-time census of all 
waterbodies, upscaling estimates of methane emissions from 
small waterbodies to broad spatial extents requires the use of 
waterbody size-abundance distributions rather than empir-
ical measurements of area. Such waterbody-size abundance 
distributions are typically generated on an ad-hoc (i.e., one-
off) basis that yields an over-exact estimate of total water-
body area reported with no uncertainty bounds (Keller et al. 
2021). As an alternative to the typical approach, we propose 
a data assimilation workflow that combines Stachelek’s 
(2023) Bayesian sensitivity analysis method with a dynamic 
data pipeline for retrieving waterbody areas from remote 
sensing imagery (Cooley et al. 2019). Our approach is 
capable of producing global waterbody nowcasts of methane 
emissions that include the uncertainty arising from dynamic 
area fluctuations. Not only does our approach avoid the 

Uncertainty in Global Time-Resolved Methane 
Emissions from Aquatic Waterbodies

necessarily static estimates derived from static waterbody 
databases, it avoids the need to continuously create massive 
global waterbody datasets (Pi et al. 2022) out of whole 
cloth. Instead, an initial estimate of methane emissions 
uncertainty is derived, which is then dynamically updated 
via a data pipeline that retrieves waterbody areas from 
remote sensing imagery.

Narrative
The approach we describe below will help better define 
uncertainties in our predictive understanding of the meth-
ane cycle using advanced statistical tools and automated 
(near) real-time data capture. It involves two components: 

Bayesian Sensitivity Analysis
Waterbody areas are typically treated as arising from a 
scale-invariant fractal generating process. This means that 
the number of waterbodies in one size class is proportional 
to the number of waterbodies in the preceding size class irre-
spective of their magnitudes (Stachelek 2023). The numer-
ical form describing such a process is a power-law function. 
One of the statistical tools often used to model data that 
follow a power-law function is the Pareto distribution. The 
fit of any particular dataset to a Pareto distribution has asso-
ciated uncertainty (see Fig. 1), which can be carried through 

Fig. 1. Median (black line) and central 95% interval estimates 
of the Pareto shape parameter alpha (red lines) from a sim-
ulation. Here, the true alpha is 0.9. [Reprinted under a  Cre-
ative Commons Attribution License (CC BY) from Stachelek, 
J. 2023. “Quantifying Uncertainty in Pareto Estimates of 
Global Lake Area,” Limnology and Oceanography: Methods 
21(3), 164–68. DOI:10.1002/lom3.10536.]

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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to uncertainty in waterbody areas (Stachelek 2023), and 
we propose to carry  this uncertainty forward even further 
to methane emissions calculations themselves (i.e., values 
across the posterior interval of the underlying parameters 
are used for calculation instead of a single posterior median).

Automated Data Capture
Even after accounting for uncertainty in total waterbody 
area on a static basis (Stachelek 2023), there remains a high 
degree of uncertainty with respect to dynamic fluctuations 
in waterbody area (Cooley et al. 2019; Pi et al. 2022). For 
example, new waterbodies are formed as a result of flooding, 
and old waterbodies disappear as a result of climate change 
and dam removal. Therefore, we propose a data pipeline 
which will retrieve raw remote sensing imagery and subject 
this imagery to water detection analysis, vectorization, and 
filtering for recurrency to exclude ephemeral and nonlake 
nonreservoir waterbodies. Limiting the pipeline to recurrent 
waterbodies will allow for temporal updating of an initial 
static uncertainty model (described above) and has the 
advantage of not requiring fully global processing. Rather, 
the model can be updated from limited portions of the globe 
as they become available in the data pipeline. When the 
automated data capture pipeline is fully integrated with the 

Bayesian sensitivity model, it will provide estimates of global 
methane emissions from inland waterbodies along with an 
associated uncertainty.  
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Focal Areas
•  Key uncertainties and knowledge gaps where new 

methodology, infrastructure, or technology can advance 
predictive understanding of the methane cycle.

•  The importance of high-potential datasets or how the 
combination of data across spatial or temporal scales or 
scientific domains may lead to new scientific insights.

Science or Technological 
Challenge
There is a large spatial and temporal uncertainty in estimat-
ing global CH4 soil oxidation, and reducing the uncertainty 
is important to reduce the bias in global CH4 budgets. There 
is no study that uses advanced knowledge-guided machine 
learning (KGML) models to estimate global CH4 soil sinks.

Rationale
CH4 oxidation by microbes is the second largest sink in 
the global CH4 budget, but its importance has been widely 
underestimated (Conrad 2009). Recent studies identified an 
overlooked CH4 soil sink in diverse terrestrial ecosystems, 
such as Arctic tundra and forest, grassland, tropical savanna, 
and the Antarctic (Kato et al. 2011; Lau et al. 2015; Covey 
and Megonigal 2019; Ortiz et al. 2021). This soil sink has 
been attributed to high affinity methanotrophs (HAM), 
which grow on atmospheric CH4 in dry mineral soils (Oh 
et al. 2020) and are highly temperature sensitive (Lau et al. 
2015). We previously incorporated HAM into pan-Arctic 
CH4 models and found that the soil sink could be twice 
the current estimate and will increase in the future due to a 
strong temperature sensitivity (Oh et al. 2020).

The underestimated global CH4 soil sink can partly explain 
the discrepancy between the global CH4 budget estimated 
by bottom-up mechanistic models and top-down atmo-

Estimation of Global Methane Soil Sink Using Multi-Source 
Datasets and Knowledge-Guided Machine Learning

spheric inversions ( Jackson et al. 2020; Saunois et al. 
2020). The mechanistic models overestimate the CH4 
budget by 175 TgCH4yr-1 when compared with atmo-
spheric inversions, mostly due to high emission estimates 
from natural sources. The current estimation of global CH4 
soil sink is ~30 TgCH4yr-1 but with a huge uncertainty 
(7 to >100 TgCH4yr-1) from previous studies (Dutaur and 
Verchot 2007; Smith et al. 2000).

Long-term trends in the global CH4 soil sink are also highly 
uncertain. A meta-analysis study showed that CH4 oxidation 
from global forest soils decreased by 77% from 1988 to 2015 
and this change was driven by an increase in precipitation 
(Ni and Groffman 2018). However, this argument has been 
challenged due to biased CH4 oxidation samples across 
wet/dry sites and years. In contrast, another meta-analysis 
study showed that CH4 oxidation increases when precipita-
tion increases for tropical, savanna, and boreal ecosystems 
(Gatica et al. 2020), and mechanistic models of global CH4 
soil sink show a long-term increasing trend due to increases 
in temperature and atmospheric CH4 (Zhuang et al. 2013; 
Murguia-Flores et al. 2021). Accurately quantifying the size 
and trends in the soil sink is extremely important to reduce 
the bias in current and future global CH4 budgets.

Multisource datasets are available at various scales and 
measured with different techniques (e.g., chamber, eddy 
covariance data, etc.). However, there is a lack of an effective 
way to extrapolate/upscale the site-level observations and 
knowledge to the global scale. Mechanistic modeling and 
machine learning (ML) approaches have been widely used 
to scale and quantify CH4 fluxes to regional and global 
scales (Zhuang et al. 2013; Peltola et al. 2019; Kim et al. 
2020; Murguia-Flores et al. 2021), but both approaches 
show their own limitations. Mechanistic modeling incorpo-
rates scientific knowledge into the upscaling, yet large uncer-
tainties arise if location- and vegetation-specific parameters 
are not calibrated properly, or if the underlying mechanisms 
are oversimplified or incompletely represented (Oh et al. 
2020). The data-driven ML is increasingly popular in Earth 
system sciences due to its potential for high computational 
efficiency and accuracy (Rasp et al. 2018; Peltola et al. 
2019; Jung et al. 2020; Kim et al. 2020; Irrgang et al. 2021). 
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However, existing ML models suffer from out-of-sample 
prediction failure in the absence of large training datasets  
and the results of ML models are often uninterpretable due 
to the black box use (Hutson 2022).

The growing field of KGML (Karpatne et al. 2022; Willard 
et al. 2023) provides a promising hybrid modeling method 
that combines the advantages of mechanistic models, ML 
models, and multisource datasets. KGML has successfully 
modeled certain Earth systems in which dynamic processes 
are well represented by established governing equations, 
such as in hydrology and atmospheric sciences (Read et al. 
2019; Beucler et al. 2021; Irrgang et al. 2021; ElGhawi 
et al. 2023; Kraft et al. 2022; Willard et al. 2023). However, 
biogeochemical processes would be mathematically highly 
nonlinear and complicated. Unlike atmospheric systems, 
soil processes in terrestrial ecosystems cannot be directly 
observed by remote sensing, and in situ measurements are 
often expensive and limited. In this white paper, we propose 
to develop a novel KGML approach to incorporate bio-
geochemical knowledge into ML and effectively assimilate 
multisource measurements to capture complex soil CH4 
oxidation processes.

Narrative
We propose to develop a KGML framework that incorpo-
rates known biogeochemical principles into ML to improve 
model training, interpretability, and accuracy across global 
spatial and monthly-to-interannual temporal variability. 
Mechanistic models will be used as scientific foundations to 
develop the KGML hierarchical structure (Khandelwal et 
al. 2020; Liu et al. 2021, 2022) and generate millions of syn-
thetic data for KGML pretraining (Read et al. 2019; Kraft 
et al. 2022). We will build separate ML modules for soil 
thermal, hydrological, and biogeochemical processes and 
an overarching model structure to link the submodules (Liu 
et al. 2021, 2022). To capture the complex biogeochemical 
processes, we will investigate advanced ML methods such 
as recurrent, convolutional, and graph neural networks 
(RNN, CNN, and GNN, respectively), as well as more 
recent techniques such as attention models and transform-
ers (Vaswani et al. 2017; Dosovitskiy et al. 2020). The key 
biogeochemical constraints (e.g., CH4 substrate and soil 
temperature influences) will be carefully embedded into the 
cost function using known principles or empirical functions 
(e.g., Michaelis-Menten kinetics and Q10 equation) as extra 
knowledge-guided losses (Read et al. 2019; Khandelwal et 

al. 2020; Liu et al. 2021; Yuan et al. 2022). The developed 
KGML will be further trained/validated with multi-source 
observations of soil CH4 sink. Satellite remote sensing data 
or reanalysis data will be assimilated to constrain the KGML 
model internal processes (e.g., soil hydrology process inter-
mediate output) to better capture the temporal and spatial 
heterogeneity.
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Focal Areas
•  Key uncertainties and knowledge gaps where new 

methodology, infrastructure, or technology can advance 
predictive understanding of the methane cycle.

•  The importance of how the combination of data across 
spatial or temporal scales or scientific domains may lead to 
new scientific insights, either within or across fields.

Science or Technological 
Challenge
Networks of eddy covariance towers, such as AmeriFlux 
and FLUXNET, provide large datasets of ecosystem energy, 
water, and carbon fluxes, enabling upscaling from sparse 
observations to regional/global flux predictions ( Jung et al. 
2019). Recently, the FLUXNET-CH4 initiative harmonized 
methane flux data from 81 sites, primarily wetlands, aiming 
to provide bottom-up upscaled methane fluxes (Delwiche 
et al. 2021). While eddy covariance data are recognized for 
their rich temporal information, their spatial dynamics are 
often overlooked and remain a primary source of uncer-
tainties (Xu, F., et al. 2017; Metzger 2018; Chu et al. 2021). 
Briefly, the source area contributing to the flux at each 
time (i.e., flux footprint) varies depending on the effective 
measurement height, underlying surface characteristics, 
and turbulent state of the atmosphere. This spatiotemporal 
dynamic nature poses a critical challenge, particularly at 
sites with heterogeneous underlying sources/sinks such as 
wetlands. Hot spots and moments of methane emissions 
can form due to fine-scale variability driven by subsurface 
biogeochemistry, hydrologic gradient, salinity, nutrient 
availability, soil characteristics, vegetation types, and 
microtopography. The spatiotemporally dynamic footprints 
and sources/sinks jointly could lead to ~14%–25% biases 

(Matthes et al. 2014; Rey-Sanchez et al. 2018; Tuovinen at 
al. 2019) in area- integrated methane emissions and up to 
83% in an extreme case (Morin et al. 2017). While recogniz-
ing the spatiotemporal dynamics, it remains challenging to 
incorporate the footprint information into the modeling and 
upscaling framework.

Rationale
Numerous research studies have attempted to address this 
“footprint” challenge, mostly in single-site studies with 
specific considerations of site characteristics and under-
lying processes. Attempts also varied regarding additional 
data requirements [e.g., chamber flux (Rey-Sanchez et al. 
2018), paired towers (Matthes et al. 2014), spatial surface 
characteristics (Xu, K., et al. 2017; Tuovinen at al. 2019), 
wavelet-based flux calculation (Xu, K., et al. 2017)] and 
core model types/structures [e.g., biophysical (Duman 
and Schäfer 2018), statistical model (Matthes et al. 2014; 
Xu, F., et al 2017; Tuovinen at al. 2019; Levy et al. 2020), 
vegetation index-based (Ran et al. 2016), machine learn-
ing (Xu, K., et al. 2017), hybrid approach (Xu, K., et al. 
2017; Metzger 2018; Wiesner et al. 2022)]. While deemed 
promising individually, there have been limited attempts to 
benchmark the proposed approaches across sites, particu-
larly for methane fluxes. We attributed the research latency 
to the following challenges. First, flux-decomposing research 
mostly began with pre-identified/hypothesized hot spots or 
spatial gradients. Yet, eddy covariance flux data contain rich 
temporal information reflecting a combination of complex 
and dynamic processes over different timescales. Thus, spa-
tial flux information is masked and confounded by temporal 
variability, hindering spatially explicit investigations. Sec-
ond, the additional data requirements remain a significant 
hurdle. For example, very few eddy covariance wetland sites 
have co-located, continuous, and representative chamber 
measurements (e.g., over vegetation, soil, and open water; 
Määttä et al. In preparation) that help constrain or validate 
the flux decomposition. Also, fine-resolution (both temporal 
and spatial) surface characteristics, such as vegetation 
indices, surface temperature, and soil moisture, are rarely 
available. Third, most approaches require prior knowledge 

Toward Spatiotemporally Resolved Methane 
Emissions for Modeling and Upscaling Research
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of the methane flux’s controlling mechanisms, which might 
vary across wetlands or land cover types within the site, 
further complicating the generalization of approaches across 
sites. A few studies have proposed a machine learning–based 
approach to derive environmental response functions, 
which combine observations, processes, and data mining 
to express the spatiotemporal flux (Xu et al. 2017; Metzger 
2018). This approach uses a universal model across a site’s 
flux footprints and reconciles observed spatiotemporal 
dynamics based on temporal and spatial covariates. A hybrid 
approach built upon this framework was proposed to incor-
porate the machine-learned spatiotemporal dynamics into a 
process- based model (Wiesner et al. 2022). It extracts multi-
dimensional processes from the environment constrained by 
knowledge-based processes and creates georeferenced maps 
and process benchmarks for geostatistics, model evaluation, 
and upscaling.

Narrative
We propose future synthesis to build a robust, scalable 
workflow to decompose methane fluxes measured using 
the eddy covariance technique, producing the spatiotempo-
rally resolved, debiased ecosystem methane emissions for 
modeling and upscaling research. Machine learning can help 
fill the workflow’s technical and data gaps discussed earlier. 
First, a recent study proposed a simplistic approach to derive 
a hot spot flux map based mainly on eddy covariance data 
(Rey-Sanchez et al. 2022). The method can better identify 
and delineate potential hot spots and their flux contribu-
tions when paired with a knowledge-based land cover map. 
Machine learning–based classification can be a surrogate or 
a means for accurate, fine-scale wetland land-cover classifi-
cations across sites (Palace et al. 2018). Second, several new 
constellations of satellites (e.g., PlanetScope and HydroSat) 
are becoming available and shedding light on fine spatio-
temporal surface characteristics in the foreseeable future. 
Machine learning approaches can help generate robust, 
downscaled, fine-resolution surface characteristics before 
the desired retrievals become available (Greifeneder et al. 
2021). We also advocated future efforts to collect and syn-
thesize chamber fluxes for providing ground-truth validation 
(Määttä et al. In preparation). Third, while machine learning 
has demonstrated the potential to learn and simulate the 
spatiotemporal flux dynamics, many previous studies still 
adopted a process-based core model for decomposing the 

spatial fluxes. We suggested that machine learning methods 
can serve as a data-exploring tool to detect relationships 
and interactions that help unveil new microbiological and 
biogeochemical processes. Further research should also 
explore the potential of a hybrid modeling approach, taking 
advantage of process-based and machine learning models, 
attributing the spatial variability, and informing site design 
and validation studies.
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Focal Areas
•  Key uncertainties and knowledge gaps where new 

methodology, infrastructure, or technology can advance 
predictive understanding of the methane cycle.

•  The importance of high-potential datasets or combining 
data across spatial or temporal scales or scientific domains 
may lead to new scientific insights, either within or 
across fields.

Science or Technological 
Challenge
Methane (CH4) is produced at the microscale, while policy-
making relies on macro-scale CH4 information. The ability 
to understand and predict CH4 cycling across distinct scales 
is essential but remains a grand challenge. Microbiologists 
have produced a huge amount of metagenomic data on 
CH4-relevant functional genes (Freitag and Prosser 2009; 
Kroeger et al. 2020), which can inform the individual CH4 
processes at the microscale. Correspondingly, land surface 
CH4 flux data can infer the CH4 cycling at an ecosystem 
level, and atmospheric CH4 concentration fluctuation 
implies CH4 cycling at a regional scale. Building a multi-
scale modeling capability can benefit from integrating data 
obtained at various scales but is particularly limited by the 
modeling capability for assimilating metagenomic data on 
methanogenesis and methanotrophy (Xu et al. 2015; Sihi 
et al. 2021).

Rationale
Physical and chemical processes are predictable with high 
confidence, while biological processes remain challenging 
for accurate prediction which heavily relies on massive 
datasets and robust models. Methane modeling techniques 
have been developed and applied for more than 40 years, 
and more than 40 CH4 models have been developed from 
1987 to 2016 (Xu et al. 2016). Considering the CH4 models 

Scaling Genes to Global Methane Modeling 
Through Artificial Intelligence

developed in the past 6 years (Song et al. 2020; Ricciuto 
et al. 2021; Sihi et al. 2021; Yuan et al. 2021), substantial 
progress has been made in modeling CH4 cycling processes. 
Meanwhile, progress has been made in gathering large 
datasets of functional genes encoding proteins responsi-
ble for CH4 production and oxidation in various biomes. 
Knowledge gaps still exist in three aspects: (1) identifying 
the driving factors for microbial mechanisms associated 
with CH4 production and oxidation, (2) connecting the 
microscale processes with large-scale CH4 fluctuation with 
high predictability, and (3) parameterizing multiscale CH4 
models for simulating CH4 cycling within an Earth system 
modeling framework. Because increased data cumulation 
did not bring a significant improvement in our confidence in 
predicting CH4 fluxes in terrestrial ecosystems and in aquatic 
ecosystems as well, we propose that integrating microbial 
genomic data with ecosystem-level measurements through 
advanced artificial intelligence would significantly improve 
our predictability of CH4 flux. This should be an achievable 
key task for the next 10 years. The mechanistic modeling 
approach carries the advantage of representing each CH4 
process individually while allowing for the integration of 
multiple sources of data (Xu et al. 2016). Advanced artificial 
intelligence (AI) algorithms can also be used for identifying 
genetic makers with direct association with CH4 emissions 
within large metagenomic datasets (Khan et al. 2023) but 
not previously linked to the processes of methanogenesis and 
methanotrophy. These agnostic approaches being performed 
through AI are anticipated to better support the model 
parameterization and application in predicting CH4 cycling.

Narrative
In order to develop robust predictability, the research 
community needs to enhance collaborative research for 
CH4 modeling on and across three scales: (1) at the micro-
scale, where different microbial processes are occurring to 
understand hot moments of emissions; (2) at the ecosystem 
scale, where CH4 emissions are being measured to capture 
ecosystem drivers of methanogenesis and methanotrophic 
processes and validate models; and (3) at the regional/global 
scale, to upscale and predict changes over time. AI serves as a 
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powerful tool to expedite the development of modeling capa-
bility by assisting in distilling information from massive data 
and further supporting model development and application. 
Specifically, we envision in-depth AI approaches to be used 
in three areas.

1. AI assistance in processing and integrating micro-scale 
meta-omics (metagenomics, metatranscriptomics, 
metaproteomics, and metabolomics) data with CH4 
models. Massive metagenomic data have been produced, 
but specific drivers of biological processes are challeng-
ing to retrieve. AI can be a powerful tool for understand-
ing microbial physiology that is fundamental for meth-
ane production and oxidation processes occurring at the 
microscale. A study has applied a multifactorial strategy 
of deep sequencing and a machine learning approach to 
compare taxonomic differences and generated metabolic 
maps with differential representations of genes involved 
in the cycling of nutrients and CH4 in forest and pasture 
soils in the Amazon Forest (Khan et al. 2023). This is an 
area that deserves further exploration as datasets have 
already been collected.

2. AI can assist in building ecosystem-level predictability 
based on plot-level observational data and micro-scale 
meta-omic datasets. Our group is working on a project 
to integrate metagenomic data with an ecosystem model 
to better parameterize the model for simulating individual 
CH4 production processes rather than solely focusing 
on land surface CH4 flux (Zuo et al. 2023). Our AI 
approach assists with model parameterization on meta-
omic data and ecosystem-level CH4 flux.

3. Enhance the Earth system model by including a microbial 
functional group-based CH4 module with the capabil-
ity of assimilating data of functional genes, ecosystem 
level CH4 flux, and atmospheric CH4 concentration. AI 
algorithms can be used to improve model efficiency and 
data assimilation.
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Focal Area
The proposed research will demonstrate the potential to 
assimilate satellite and unmanned aerial vehicle (UAV) data 
into a lake methane model to improve the accuracy of lake 
methane prediction in the temperate climate regions of the 
Northern Hemisphere.

Science or Technological 
Challenge
Methane emissions from lakes are one of the largest natural 
methane sources, comprising as much as one-third of global 
methane emissions based on a recent estimate (Rosentreter 
et al. 2021). Lakes are prominent landscape elements in 
the temperate regions of the Northern Hemisphere. Due to 
climate warming, methane emissions from northern lakes 
are expected to rise rapidly in this century (Tan and Zhuang 
2015). However, our capability to model methane emissions 
from northern lakes is still very limited. First, many related 
lake physical processes, such as water mixing and ice phenol-
ogy, have not been well constrained in the current large-scale 
lake models (Guseva et al. 2020). Second, lake primary pro-
duction not only provides labile organic carbon for metha-
nogens to produce methane in anoxic conditions but also 
fuel methanogenesis in oxygen-rich conditions. It is found 
to be a critical factor for methane emissions from northern 
lakes but hasn’t been well represented in the current large-
scale lake models (West et al. 2016). Third, satellite-based 
methane data do not have sufficient signal-to-noise ratios 
and spatiotemporal resolutions to detect methane plumes 
from lake surface (Tan et al. 2016).

Rationale
Although data assimilation is widely used to improve the 
performance of numerical models, there are only limited 
applications for methane models. This is mainly because 
traditional data assimilation (DA) methods, such as 
ensemble Kalman filter (EnKF), have high computational 

and implementation costs. Also, traditional DA methods 
are not efficient to assimilate different types of data. To 
bridge the gaps, we propose to develop a long short-term 
memory (LSTM) neural network–based DA method that 
harnesses quality, multisource satellite data of ice cover, lake 
surface water temperature, Secchi depth, chlorophyll, and 
high-quality UAV data of methane fluxes to: (1) optimize the 
lake model’s parameters and (2) improve estimations of lake 
methane emissions. Compared to traditional DA methods, 
the proposed machine learning–based method will be com-
putationally efficient, code-change free, and bias-proofed 
against ill-selected likelihood functions (Tsai et al. 2021). 
Once validated, the method can be extended to temperate 
regions and even the high-latitude regions of the Northern 
Hemisphere to constrain lake methane emissions from these 
regions. The effort will strongly benefit to the accomplish-
ment of the Global Methane Pledge.

Narrative
We will develop a LSTM neural network–based DA method 
to assimilate satellite and UAV data to improve the estima-
tion of lake methane emissions in temperate regions of the 
Northern Hemisphere.

Description of the machine learning–based DA method. 
To overcome the limitations of traditional DA methods, we 
will develop a LSTM-based surrogate model to efficiently 
assimilate different types of lake data. Specifically, the neural 
density estimator will adjust the prior distribution of model 
parameters using satellite observations and UAV measure-
ments to provide desirable sets of model parameters (see 
Fig. 1). We will construct the DA framework in three steps:

1. First, on the study lake, we will run a small number of 
lake model ensembles and then train a LSTM surrogate 
model using climate inputs, simulated lake dynamics, 
and model parameters. This step makes the surrogate 
LSTM model learn the ice phenology, mixing, primary 
production, and methane flux physics of the process-
based lake methane model.

2. Next, we will use a neural density estimator to assess the 
uncertainty of the LSTM ensembles based on satellite 

A Machine Learning Data Assimilation Method 
to Improve Lake Methane Prediction
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Fig. 1. Workflow of training a machine learning–based surrogate model of a 1-D lake methane model and using the surrogate 
model and a neural density estimator to assimilate satellite and unmanned aerial vehicle data to constrain simulated lake 
methane emissions. Climate inputs for Arctic Lake Biogeochemistry Model (ALBM) and long short-term memory (LSTM) are 
air temperature (T), precipitation (P), wind speed (u), relative humidity (RH), shortwave radiation (SW), and longwave radi-
ation (LW).

and UAV observations and produce the posterior distri-
bution of the parameters. The neural density estimator 
is a special approach to the inverse problem. Simulators 
use parameters (θ) to simulate data (Y). Inference goes 
the other direction, using observed data (YTrue) to get 
back the parameters (θ). Here, we will utilize the neural 
density estimator with satellite and UAV observations 
to infer better values for lake parameters with physical 
meaning.

3. Finally, lake parameters based on the posterior dis-
tributions will be fed to the LSTM surrogate model 
to produce estimations of lake thermal and methane 
dynamics that are close to observations. The estimated 
lake thermal and methane dynamics will be validated 
against in situ observations.

Description of the lake model. The Arctic Lake Biogeo-
chemistry Model (ALBM) model is a 1-D process-based 
lake methane model developed by Dr. Zeli Tan (Tan et al. 
2016). In this research, we will use the ALBM model to 
produce prior lake thermal and methane estimates for train-
ing the LSTM surrogate model. Here, we briefly describe 
the model processes and structure that are related to lake 
stratification simulations. ALBM is an integral energy lake 

model based on the Hostetler diffusivity parameterization, 
with depth-resolved 1-D water and sediment columns. Both 
the water and sediment columns have variable layer thick-
ness, with thinner layers at surface to represent more intense 
thermal dynamics. In the model, lake methane emissions are 
governed by methane production, oxidation, and transport 
(via both diffusion and ebullition). The ALBM model has 
demonstrated good performance in simulating methane 
emissions of specific northern lakes (Tan et al. 2015; Guo 
et al. 2020).

Description of the satellite and UAV observations. We 
will use the satellite and UAV data of different lake thermal 
and biogeochemical variables together for data assimilation. 
All satellite data operations will be executed using Google 
Earth Engine. (1) For lake surface temperature, we will use 
the Advanced Very High Resolution Radiometer (AVHRR) 
sensor-based GloboLakes product for large lakes and the 
Landsat-8 thermal data for small lakes. (2) For ice cover, 
we will use the Advanced Microwave Scanning Radiometer 
(AMSR) sensor-based daily ice phenology data for large 
lakes and the Landsat-based ice phenology data for small 
lakes. (3) For Secchi depth, we will extract the values for 
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the studied lakes from multiple satellite sensors, including 
Moderate Resolution Imaging Spectroradiometer (MODIS), 
Landsat-8 Operational Land Imager (OLI), Sentinel-2 
MultiSpectral Imager (MSI), and MEdium Resolution 
Imaging Spectrometer (MERIS), by adopting a well- 
established quasi-analytical algorithm. (4) For chlorophyll, 
we will use the data from the Landsat-8 OLI and the Ocean 
and Land Color Instrument (OLCI) aboard the Sentinel 3 
satellite. (5) For methane fluxes, we will use drones carrying 
multimodal instruments to measure lake water surface tem-
perature and map methane plumes close to sources and use 
coincident wind measurements to derive flux accurately and 
reliably. The approach will be developed at the University 
of Idaho.
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Focal Areas
•  A solution to a key challenge in implementing advanced 

statistical approaches as it pertains to the methane cycle.

•  Identifying high-potential datasets and how advanced 
statistical and numerical methods can be used to realize 
new scientific insights.

•  How automated or real-time data capture and process-
ing can be used to address issues of spatial and temporal 
heterogeneity and data sparsity.

Science or Technological 
Challenge
Global warming has significantly increased megafire risks, 
which are important sources of methane (such as the mega-
fire in Indonesia in 1997; Turner et al. 2019), one of the 
most important greenhouse gasses. However, estimates of 
wildfire-induced methane emissions from either bottom-up 
(BU) or top-down (TD) models remain highly uncertain 
due to the imperfect model structures and limited data con-
straints. This would bring a big challenge to understanding 
and projecting future climate change.

Rationale
Methane emissions from wildfires are typically estimated 
using two primary approaches: BU and TD models. BU 
models rely on observations of combustion complete-
ness (CC) and emission factors (EFs) for different plant 
functional types, which are often based on limited site 
observations. These estimates typically do not account for 
spatiotemporal variability in CC and EFs across different 
environments. However, BU models can provide high- 
resolution estimates of emissions.

On the other hand, TD models rely on atmospheric meth-
ane concentration measurements from towers or satellites, 
which are then used to estimate ground emissions from fires 
through inverse atmospheric transport modeling. TD mod-
els are typically more reliable at coarser spatial and temporal 

Physics-Guided Machine Learning of Wildfire Methane Emissions

scales. TD models are often combined with BU models 
to estimate wildfire emissions, as BU models can provide 
important prior information for the TD approach.

To accurately estimate methane emissions from past and 
future fires, it is crucial to efficiently integrate data from 
various sources, such as ground, tower, and satellite obser-
vations, to constrain a coupled BU-TD model. Addition-
ally, BU models need to be well parameterized for future 
projections. Traditionally, BU and TD models are param-
eterized separately, which requires a large number of time- 
consuming ensemble runs of the models. Furthermore, data 
assimilation algorithms, such as ensemble Kalman Filter, 
used to constrain these models often assume linear relation-
ships between observations and model state variables (e.g., 
parameters), which may not be true.

In this white paper, we identified a few points where 
machine learning could be used to improve estimation and 
projection of methane emissions due to wildfires by inte-
grating with BU and TD models.

Narrative
Machine learning (ML) helps solve the above-mentioned 
problems in several ways. 

First, ML can be used to create surrogate models, which 
represent physics-guided ML that approximates the behav-
ior of BU and TD models but with grand reduction of the 
computational cost, making data assimilation more efficient. 
For example, Zhu et al. (2022) built a deep neural network 
(DNN) scheme that surrogates the process-based wildfire 
model within the Energy Exascale Earth System Model 
(E3SM). The surrogate wildfire model successfully captured 
the observed regional burned area. Such models can be 
straightforwardly extended for the purpose of simulating 
methane emission due to fires.

Second, ML can also be used to learn and provide a more 
accurate representation of the relationship between obser-
vations and model variables. Satellite/tower observations 
usually only provide column methane concentrations at, 
near, or far from the locations where fires happen. The rela-
tionships between atmospheric column methane concentra-
tion, fire-emitted methane, EFs/CC are determined by the 
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fire burning and atmospheric transport processes described 
in the BU and TD models, which are often highly nonlinear. 
ML can help identify and model these nonlinear relation-
ships, which can improve the accuracy of data assimilation 
(Abarbanel et al. 2018). ML-based data assimilation is 
being used in weather forecasting but has not yet been 
applied for estimating methane emissions.

Additionally, ML can help with the selection and weight-
ing of observations in the data assimilation process (Geer 
2021). Traditional data assimilation methods often assume 
that all observations are equally important, but this may not 
always be the case. ML can help identify which observa-
tions are most important for improving model accuracy and 
assign appropriate weights to them.
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Focal Areas 
This work critically contributes to four core challenges asso-
ciated with CH4 monitoring and prediction:

•  The development of a flexible modeling framework for 
upscaling biogenic CH4 flux predictions. 

•  The improvement of existing inventory and emissions factor- 
based oil and gas (O&G) sector production models.

•  Implementation of state-of-the-art AI for the uncertainty-
aware and climate-responsive scaling of both anthropo-
genic and biogenic CH4 sources. 

•  Incorporation into a top-down detection and source 
attribution remote sensing framework.

Science or Technological 
Challenges 
This research program is multifaceted, with separate bottom-
 up and top-down research challenges. At its core is the 
comparison of models with observations, using instru-
mented research sites as a source of measurements. Both bio-
geochemical and O&G-centric models have data fusion and 
forecasting challenges, made more complex when paired 
with the requirement that the models are scaled spatially 
and interrogated using remote sensing CH4 platforms.

Biogenic Focus
Significant effort has been made over the past decade to 
understand the mechanisms driving the generation and 
release of biogenic CH4 from the land surface, especially 
in regions considered particularly sensitive to changes in 
climate like the Arctic. Site-specific validation studies have 
linked physical processes at the surface/subsurface level 
with local CH4 flux measurements (e.g., chamber, flux 
tower) but remaining challenges include:

Characterizing Remotely Sensed CH4 Through 
Biogenic and Anthropogenic Flux Source Attribution: 
An Ecosystem Embedding Approach

•  Lack of closure between bottom-up and top-down CH4 
emissions measurements and insufficient measurements 
at the flux tower scale and in the shoulder seasons.

•  Complexity of the processes involved not lending them-
selves to scaling due to computational cost or lack of 
ability to constrain models.

•  Absence of a flexible framework to forward models across 
ecotypes or future ecotype transitions honoring uncer-
tainty in future changes to Arctic permafrost.

Narrative and Rationale
Monitoring and predicting CH4 emissions is an emerging 
challenge in the global biosphere-atmosphere flux commu-
nity, the success of which will have significant impacts on 
our ability to constrain associated uncertainty and propose 
steps to mitigate runaway climatic change. CH4 is produced 
through biogenic (natural) and anthropogenic (human-
caused) sources and any attempts to characterize CH4 

remotely cannot inherently discriminate between the two 
sources. However, biogenic and anthropogenic mechanisms 
of CH4 fluxes have very different abiotic drivers, with 
substantially variable responses to future climates and policy 
intervention efforts. For instance, biogenic CH4 fluxes are 
ecotype-dependent and are controlled to varying degrees 
by surface temperature, moisture content, precipitation, leaf 
area index, lateral subsurface fluxes, organic matter composi-
tion, and soil physical properties, among other factors.

Anthropogenic sources of CH4 flux are dominated by 
O&G infrastructure, with complex and poorly constrained 
understanding of how CH4 emission from O&G varies as 
a function of atmospheric conditions and hardware state 
variables (e.g., component type, time since installation, 
time since maintenance, etc.). Current bottom-up model-
ing approaches subsume these mechanistic relationships 
using emissions factors and scaling spatially as a function of 
component composition, resulting in massive and poorly 
constrained uncertainties that are static with respect to 
climate. Our research here directly contributes to improved 
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estimates and scaling of these anthropogenic fluxes through 
direct observations made using eddy covariance.

CH4 flux measurements collected across networks of eddy 
covariance flux tower sites are a massively underleveraged 
source of direct ground-atmosphere fluxes of CH4 that can 
be described as a function of biotic and anthropogenic state 
variables in response to changes in abiotic drivers. These 
CH4 flux response functions will play a critical role in scaling 
local measurements to landscape and regional scales.

Our integrated CH4 monitoring and decision framework 
combines bottom-up estimates of CH4 emissions from 
biogenic and anthropogenic sources with top-down mea-
surements from satellites and aerial platforms, using eddy 
covariance as a systems integration lens. Specifically, using 
sequence transformers used for language modeling to create 
an ecosystem-embedding model for the terrestrial fluxes 
of carbon, water, and energy in a general way, with specific 
inclusion of terrestrial sources of CH4. This ecosystem 
embedding approach learns the relationship between abiotic 
drivers and CH4 flux as a function of remotely retrievable 
state variables of the system. By describing these state 
variables specifically in terms of anthropogenic parameters 
(e.g., O&G infrastructure databases) and biogenic parame-

ters (e.g., vegetation type, leaf area index), we can dramati-
cally improve our ability to generate bottom-up emissions 
estimates, with direct biogenic or anthropogenic source 
attribution. Ultimately, this capability is designed to operate 
in concert with space-borne and aerial  -gridded estimates of 
CH4 concentration and will permit the decomposition of an 
arbitrary grid cell into components that are due to anthropo-
genic and biogenic contributions.

Focusing here on our biogenic modeling contributions, 
we plan to use physics-constrained machine learning to 
inform the transformer architecture’s characterization of 
biogenic CH4 fluxes. Specifically, we are incorporating a 
bio- geophysical CH4 production model into a component 
of ecosystem embedding transformer objective function.

Ultimately, our combined source-specific bottom-up mod-
eling approach will augment top-down monitoring efforts 
by allowing researchers to ask questions about consensus 
between measurements and models and, most critically, 
to understand how terrestrial CH4 production is changing 
as a function of natural and human caused activities—a 
distinction that is central to managing and mitigating 
climate change.
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Focal Areas
A major knowledge gap in our understanding of global 
carbon cycling is the current and future role of croplands in 
both production and consumption of atmospheric methane 
(CH4). One of the most powerful tools available for assem-
bling and testing our knowledge of CH4 flux are Earth sys-
tem models such as E3SM. The current E3SM Land Model 
(ELM) does not consider any managed ecosystem CH4 flux. 
Therefore, expanding ELM’s capabilities, currently limited 
to wetlands, to include croplands will leverage emerging 
datasets from recent syntheses (Guo et al. 2023), eddy 
covariance networks (Delwiche et al. 2021), and top-down 
CH4 flux estimates (Hannun et al. 2020) while building on 
the expertise already established in ELM.

Science or Technological 
Challenge
The challenge of this expansion is three-fold: (1) processes 
currently parameterized for wetland CH4 flux will not directly 
translate to managed upland systems (Riley et al. 2011); 
(2) while data availability is improving rapidly, CH4 flux and 
corresponding biotic and abiotic metadata from croplands are 
not as extensive as for wetland ecosystems; and (3) croplands 
are dynamically managed, requiring an understanding of 
the economic context that drives crop production and feeds 
back into CH4 flux. We propose that machine learning (ML) 
approaches deployed in combination with domain expertise 
and additional DOE-supported research products, can bridge 
these challenges and support the development and testing of 
a process-based, interpretable model.

Rationale
Most process-based ecosystem CH4 emission models are 
oriented towards wetland ecosystems that are large natural 
producers of CH4. However, the global CH4 emissions from 
croplands, primarily from rice cultivation, are estimated 
to be 8% of global anthropogenic CH4 emissions (Saunois 

Implementing and Benchmarking an 
Agricultural Methane Emissions Model in E3SM

et al. 2020). Upland ecosystems can also be CH4 sinks, and 
active management of croplands, such as periodic drainage 
of rice paddies (Runkle et al. 2019) and no-till agriculture 
(Ussiri et al. 2009), have the potential to offset CH4 release. 
Furthermore, global change is increasing both the magni-
tude of cropland sink potential and the frequency of intense 
rainfall events that could shift these systems to CH4 sources. 
This combined with the dynamic potential of various 
agricultural management practices and the strong radiative 
forcing effect of CH4 makes incorporating these agroecosys-
tems in Earth system models increasingly important. How-
ever, the spatiotemporal variability in CH4 flux in cropland 
ecosystems, limitations of data availability on that flux, and 
the managed-lands aspect of these ecosystems all represent 
distinct challenges to this advancement.

Narrative
Our goal is to implement an AI-informed, process-based 
cropland CH4 emission module within E3SM. The follow-
ing steps outline our approach in broad strokes:

Step 1. Even with domain expertise, it is not immediately 
obvious what processes or parametrizations should be 
prioritized to update process-based models from wetland to 
cropland, particularly given the more limited data available 
for cropland. As a first step, we propose to utilize explor-
atory, unsupervised ML to identify reduced-form patterns 
explaining a meaningful proportion of variance in the 
spatiotemporal CH4 datasets for different areas, including: 
(1) observed wetland CH4 data, (2) simulated wetland CH4 
data, (3)(albeit more limited) observed cropland CH4 data, 
and (4) cropland CH4 data simulated with ELM’s wetland 
CH4 model. These datasets would include variables such 
as measured (or modeled) CH4 concentration, meteoro-
logical data, temperature, humidity, and soil temperature. 
Self- Organizing Maps (SOMs) are a promising method 
to guide exploration of existing data sources to prioritize 
aspects for updating. By training SOMs on these datasets, 
a lower- dimensional representation (or generated map) of 
each will be produced (Nourani et al. 2013). Each generated 
map is an extraction of complex patterns characteristic to 
the training data, and the direct comparison of the resulting 
patterns will allow us to explore differences in cropland ver-
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sus wetland CH4 processes, thereby guiding development 
efforts in the next step.

More specifically, each generated map can treat the three 
nontraining datasets as novel input data to be classified, 
essentially displaying the nontraining dataset in the space 
of the training data’s distribution in a visually digestible 
way. The resulting figures can be used to identify discrep-
ancies among these datasets and guide approaches to 
adapt, update, and/or reparameterize the well-established 
wetland- CH4 processes for cropland. Some essential addi-
tions are already known, for instance, ELM currently does 
not model rice, the dominant crop when considering agri-
cultural CH4 sources. However, interpreting these maps and 
their discrepancies fundamentally requires domain expertise 
because it is an exploratory exercise.

This results in expertise-guided hypotheses of updates to 
the process-based wetland model for use in cropland that 
can be made and interpreted iteratively.

Step 2. After this exploratory phase, the revised 
cropland- CH4 module will undergo quantitative assess-
ment. This validation will come from comparing simulated 
ELM cropland CH4 versus FLUXNET-CH4 data. Here we 
will implement classical analysis of error between simulated 
and observed cropland CH4 values as recommended by 
International Land Model Benchmarking (Collier et al. 
2018). Additionally, we will use ML approaches to charac-
terize multidimensional spatiotemporal error (Tebaldi et al. 
2021) to highlight areas of improvement missed by classical 
multimetric approaches.

Step 3. As knowledge gaps are identified via Steps 1 
and 2, literature review and synthesis using emerging data 
on upland CH4 flux (Guo et al. 2023) will be used to fill 
these gaps, when possible, following statistically rigorous 
meta-analysis techniques (Morris et al. 2022). Additionally, 
ongoing work as part of DOE’s COMPASS project will 
provide valuable syntheses of upland CH4 sink-to-source 
transition points.

Step 4. We hypothesize that land management practices 
are crucially important to capturing variability in cropland 
CH4 flux. Therefore, the final component of this proposed 
research is to incorporate land management practices that 
can impact cropland CH4 emissions and to use the updated 
model to quantify CH4 mitigation that can be achieved in 
the future under various climate change scenarios. If our 
hypothesis is correct, expanding the current management 
options of ELM’s cropland module to include soil drainage 
and aeration will be essential. One possibility that leverages 

additional expertise would be incorporation of the land-use 
and agricultural technology distributions from the Global 
Change Assessment Model (GCAM), which is now actively 
coupled into E3SM, opening exciting simulation possibili-
ties in this area. GCAM is an integrated assessment model 
that takes into consideration the land-energy-human-climate 
system. Such models are the best tools available for assessing 
various global C management scenarios. An aspect of the 
cropland CH4 module would then be the ability to reflect 
different, albeit estimated, adaptation rates of conservation 
agricultural practices under various policy scenarios.
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Focal Areas
•  Approaches that support the transfer of mechanistic 

knowledge gained in the laboratory to make predictions 
in the field, and vice versa.

•  Key uncertainties and knowledge gaps in CH4 where new 
AI technology can advance plant-trait based predictive 
understanding of the wetland methane cycle.

•  The importance of high-potential datasets (FLUXNET- 
 CH4; COSORE; plant/root trait databases; network 
data and experiments such as NEON, COMPASS, and 
SPRUCE) and how the combination of data across spatial 
or temporal scales or scientific domains may lead to new 
scientific insights, either within or across fields.

Science or Technological 
Challenge
Predicting highly variable wetland CH4. Wetlands are 
the largest natural source of CH4 to the atmosphere and 
remain a key uncertainty in the global CH4 budget, emit-
ting between 100–180 Tg CH4 yr−1 (Saunois et al. 2020). 
Wetlands also face unique pressures (drainage, salinization, 
etc.) from human land uses (Fluet-Chouinard et al. 2023) 
and climate change (Peng et al. 2022), often driving these 
systems into disequilibrium (Camill and Clark 1998). 
Uncertainty in wetland CH4 emissions is partly due to the 
dynamic nature of wetland biogeochemistry and hydrology, 
as well as processes involved in CH4 flux (methanogene-
sis, methanotrophy, gas transport, etc.). The variability of 
wetland ecosystem structure and function is hypothesized 
to further increase with increasing environmental stress-
ors (Malhotra and Roulet 2015) and expected to further 
hinder CH4 predictions and scaling.

Plants are integrators of the high spatiotemporal variabil-
ity in wetland ecosystems, responding to and influencing 
microbial structure and function, soil moisture, nutrient 

AI4 Plant Trait-Based Wetland CH4 Predictions

status, etc. Thus, fine-scale (~1 m2/hourly to 1 km2/season) 
heterogeneity in plant properties (hereafter, traits) is often 
closely related to wetland CH4 flux variability (Waddington 
et al. 1996; Lai et al. 2014; Goud et al. 2017; Knox et al. 
2021), and plant trait incorporation into empirical and pre-
dictive models of CH4 could help reduce uncertainties from 
fine-scale variability. Advances in high-potential CH4 flux 
databases (Knox et al. 2019; Delwiche et al. 2021), plant 
trait databases (Iversen et al. 2017; Kattge et al. 2019), wet-
land CH4 modeling (Salmon 2022), and deep neural net-
work technologies (Chen et al. 2018; Reichstein et al. 2019) 
combined with process knowledge derived from controlled 
laboratory and manipulative field experiments can help 
refine our understanding and predictions of wetland CH4.

Rationale
Above and belowground plant traits to improve CH4 
predictions. Advances in incorporating a mechanistic and 
scalable understanding of how plant traits influence wetland 
CH4 emissions have been hindered by several research gaps. 
(1) We lack a synthetic view of which plant traits most affect 
CH4 processes and can be best used as predictors. Knowl-
edge gaps particularly remain around the mechanistic links 
between root traits and CH4 fluxes (e.g., root biomass, root-
ing depth, exudation, aerenchyma size; Sutton-Grier and 
Megonigal 2011). (2) While chamber-based CH4 measure-
ments are often coupled with plant trait information, quan-
tification of wetland plant traits at the footprint scale of CH4 
eddy covariance towers is usually difficult. (3) Also lacking 
are frameworks to connect relatively-easy-to- measure and 
remotely sensible aboveground with belowground traits. 
(4) Until recently, high-potential validation datasets were 
unavailable on CH4 flux and plant traits, particularly root 
traits, that would allow for scaling mechanistic information 
from lab and field studies to site and regional scales.

Narrative
AI-enabled mechanistic linkages between plant traits 
and wetland CH4. We propose to incorporate lab/field-
scale mechanistic understanding of plant trait drivers of 
CH4 into site and regional scales using a combination of lab 
and field studies, data syntheses, and deep neural network 
modeling. Our approach is broadly divided into two steps: 
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1. Developing and synthesizing mechanistic frameworks 
from new lab studies, and existing gradients and exper-
iments. Controlled laboratory studies, such as wetland soil 
incubation experiments with isotopically labeled root mate-
rial to trace the fate of root-carbon in CH4 emissions, will be 
used as one tool to generate functions of CH4 response to 
trait variability. We will also synthesize plant trait and CH4 
data from natural gradient studies and databases, such as 
NEON and FRED (Iversen et al. 2017), and from existing 
manipulative experiments to provide a gradient of plant 
trait values. For example, SPRUCE (Hanson et al. 2017) 
provides root trait and CH4 flux gradients across a peatland 
warming study (Hanson et al. 2020; Malhotra et al. 2020) 
and COMPASS sites provide elevational gradients across 
coastal wetlands. We will also partner with ongoing exper-
imental data synthesis efforts such as the DeepSOIL2100. 
Through these lab and synthetic studies, we will develop 
specific model structures and parameters on trait-CH4 links 
for our AI predictions in (2). 

2. Predictive modeling of the mechanistic links between 
plant traits and wetland CH4. We will test mechanistic 
model structures developed in (1) linking CH4-relevant 
plant traits and CH4 processes as frameworks for hybrid AI 
methods such as neural ordinary differential equations (neu-
ral ODE; Chen et al. 2018). Such hybrid approaches allow 
learning process parameters, latent variables, and functional 
relationships across a number of hypothesized structural 
constraints and complexity. Input data for these models will 
originate from experiments and syntheses highlighted in (1). 
High-potential datasets such as the FLUXNET-CH4 and 
COSORE databases (Bond- Lamberty et al. 2020; Delwiche 
et al. 2021) would serve as the key validation datasets. In 
particular, combining chamber and eddy covariance tower 
measurements from the same sites will allow us to test 
trait-CH4 linkages in a neural ODE across spatial scales to 
evaluate the generalizability of the learned parameters and 
functional relationships. Through the integration of lab, field, 
and synthetic data into a hybrid modeling approach, this 
project will allow us to identify key mechanistic constraints 
and sources of uncertainty of the relationship between plant 
traits and CH4 emissions in wetlands.

References
Bond-Lamberty, B., et al. 2020. “COSORE: A Community Database for 
Continuous Soil Respiration and Other Soil-Atmosphere Greenhouse Gas 
Flux Data,” Global Change Biology 26(12), 7268–283. 

Camill, P., and J. S. Clark. 1998. “Climate Change Disequilibrium of Boreal 
Permafrost Peatlands Caused by Local Processes,” American Naturalist 
151(3), 207–22. 

Chen, R. T. Q., et al. 2018.“Neural Ordinary Differential Equations,” arXiv 
1806, 07366 [cs.LG].

Delwiche, K. B., et al. 2021. “FLUXNET-CH4: A Global, Multi-Ecosystem 
Dataset and Analysis of Methane Seasonality from Freshwater Wetlands,” 
Earth System Science Data 13(7), 3607–689.

Fluet-Chouinard, E., et al. 2023. “Extensive Global Wetland Loss Over the 
Past Three Centuries,” Nature 614, 281–86.

Goud, E. M., et al. 2017. “Predicting Peatland Carbon Fluxes from Non- 
Destructive Plant Traits,” Functional Ecology 31(9), 1824–833.

Hanson, P. J., et al. 2017. “Attaining Whole-Ecosystem Warming Using 
Air and Deep-Soil Heating Methods with an Elevated CO2 Atmosphere,” 
Biogeosciences 14(4), 861–83.

Hanson, P. J., et al. 2020. “Rapid Net Carbon Loss from a Whole- 
Ecosystem Warmed Peatland,” AGU Advances 1(3), e2020AV000163. 
DOI:10.1029/2020av000163.

Iversen, C. M., et al. 2017. “A Global Fine-Root Ecology Database to Ad-
dress Below-Ground Challenges in Plant Ecology,” New Phytologist 215(1), 
15–26.

Kattge, J., et al. 2019. “The Global Database of Plant Traits: TRY Version 
5.0,” Geophysical Research Abstracts 21, EGU2019-18965. 

Knox, S. H., et al. 2019. “FLUXNET-CH4 Synthesis Activity: Objectives, 
Observations, and Future Directions,” Bulletin of American Meteorological 
Society 100(12), 2607–632. DOI:10.1175/BAMS-D-18-0268.1.

Knox, S. H., et al. 2021. “Identifying Dominant Environmental Predictors 
of Freshwater Wetland Methane Fluxes Across Diurnal to Seasonal Time 
Scales,” Global Change Biology 27(15), 3582–604.

Lai, D. Y. F., et al. 2014. “Spatial and Temporal Variations of Methane Flux 
Measured by Autochambers in a Temperate Ombrotrophic Peatland,” 
Journal of Geophysical Research: Biogeosciences 119(5), 864–80.

Malhotra, A., et al. 2020. “Peatland Warming Strongly Increases Fine-Root 
Growth,” PNAS 117(30), 17627–634.

Malhotra, A., and N. T. Roulet. 2015. “Environmental Correlates of Peat-
land Carbon Fluxes in a Thawing Landscape: Do Transitional Thaw Stages 
Matter?” Biogeosciences 12(10), 3119–130. 

Peng, et al. 2022. “Wetland Emission and Atmospheric Sink Changes 
Explain Methane Growth in 2020,” Nature 612, 477–82.

Reichstein, M., et al. 2019. “Deep Learning and Process Understanding for 
Data-Driven Earth System Science,” Nature 566, 195–204.

Salmon, E., 2022. “Assessing Methane Emissions for Northern Peatlands in 
ORCHIDEE-PEAT Revision 7020,” Geoscientific Model Development 15(7), 
2813–838.

Saunois, M., et al. 2020. “The Global Methane Budget 2000–2017,” Earth 
System Science Data 12(3), 1561–1623. DOI:10.5194/essd-12-1561-2020.

Sutton-Grier, A. E., and J. P. Megonigal. 2011. “Plant Species Traits Reg-
ulate Methane Production in Freshwater Wetland Soils,” Soil Biology and 
Biochemistry 43(2), 413–20.

Waddington, J. M., et al. 1996. “Water Table Control of CH4 Emission 
Enhancement by Vascular Plants in Boreal Peatlands,” Journal of Geophysical 
Research 101(D17), 22775–785.



Appendix C  |  White Papers

93U.S. Department of Energy Biological and Environmental Research Program                                          March 2024

Kyle Delwiche,1 Rob Jackson,2 Sara Knox,3 Avni Malhotra,4 

Etienne Fluet-Chouinard,4 Alison Hoyt,2 Zutao Ouyang,2 
Gavin McNicol,5 Trevor Keenan,1

1University of California–Berkeley, 2Stanford University, 
3The University of British Columbia, 4Pacific Northwest 
National Laboratory, 5University of Illinois–Chicago

Focal Areas
Expanding the network of methane eddy covariance mea-
surements in tropical wetland ecosystems by facilitating new 
data collection and adding existing data into an updated 
version of the FLUXNET-CH4 dataset. Combining this new 
network and AI/ML-based models with recent advances in 
mapping tropical inundation and wetland types to improve 
process-based emission models and enhance their agree-
ment with top-down estimates of tropical methane emis-
sions, such as satellite-based instruments.

Science or Technological 
Challenge
Global atmospheric methane (CH4) concentrations are 
rising at an accelerating rate, yet uncertainties around major 
terrestrial and aquatic CH4 sources currently prevent global 
CH4 budget closure. Tropical latitudes account for roughly 
68% of global emissions, and most tropical emissions come 
from wetlands (Saunois et al. 2020). Despite their impor-
tance to global methane emissions, current tropical wetland 
methane emissions and projected changes due to climate 
change are poorly understood. This uncertainty is due to 
multiple factors, including the paucity of field-based mea-
surements of methane emissions from the tropics (Delwiche 
et al. 2021), a lack of process-based understanding of trop-
ical methane emissions (Parker et al. 2018), and uncertain-
ties surrounding inundation mapping both currently and 
under future hydrological change (Gerlein-Safdi et al. 2021; 
Padney et al. 2021). Accurately upscaling tropical wetland 
methane emissions will therefore require more field-based 
measurements (particularly from eddy covariance tow-
ers and flux chambers), AI-fueled advances in upscaling 

techniques, and improved modeling of hydrological and 
ecophysiological factors governing methane release.

Rationale
Eddy covariance systems are able to measure methane 
emissions at high temporal resolution over landscape scales, 
yet these systems require significant maintenance and are 
therefore less utilized in challenging tropical ecosystems. 
Furthermore, eddy covariance methane data that are 
currently being collected in tropical ecosystems are not all 
included in FLUXNET-CH4, the global compilation of 
methane flux data (Delwiche et al. 2021), for a variety of 
practical, technical, and cultural reasons. Increasing the 
availability of these valuable datasets requires a systematic 
effort to work with local site teams to QA/QC, partition, 
and gap-fill eddy covariance methane and CO2 data for 
inclusion in an updated version of  FLUXNET-CH4. 
Methodological advances enabling the combination of EC 
data with other high-potential datasets such as chamber flux 
databases (Bond-Lamberty et al. 2020), would improve 
spatial representation and prediction. Our recent work using 
AI-aided models to upscale global wetland CH4 fluxes has 
found strong model divergence in humid tropical rainfor-
est regions, highlighting the need for more tropical data. 
These new gridded products from upscaling global wetland 
CH4 fluxes (UpCH4; McNicol et al. In preparation) and 
monsoon Asia paddy-rice CH4 fluxes (RiceCH4; Ouyang et 
al. 2023) both have insufficient training sites in the tropics. 
For UpCH4, this leads to large differences between upscaled 
products and state-of-the-art process and inversion-based 
models. However, better model convergence in ecosystems 
with more training data (temperate and boreal ecosystems) 
demonstrates the potential of AI-driven upscaled products 
as long as sufficient training data exist.

Two other critical needs for improving estimates of tropical 
wetland methane emissions are better maps classifying 
tropical wetlands and refined inundation maps. While inun-
dation alone is insufficient to explain tropical CH4 fluxes, 
which also vary with nutrient dynamics, vegetation, and 

Expanding Eddy Covariance Measurements 
from Tropical Wetland Methane Emissions to 
Improve AI-Aided Emissions Upscaling
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carbon inputs, inaccurate tropical hydrology can exacerbate 
mismatches between process-based model estimates of 
methane emissions and satellite-based measurements from 
GOSAT or TROPOMI (Parker et al. 2018; Pandey et al. 
2021). For example, by including inundation dynamics 
in wetland maps and linking these to methane emissions 
models, recent work by Gerlein-Safdi et al. (2021) resulted 
in improvements to the predicted seasonality and interan-
nual variability of methane emissions. Thus, more work is 
needed to develop AI tools to detect inundation conditions 
over time with L-band radar capable of making measure-
ments through cloud or vegetation cover, such as CYGNSS 
(Zeiger et al. 2022) and NISAR.

Narrative
To expand the amount of eddy covariance data available 
from tropical wetland ecosystems, we will develop part-
nerships with research groups currently making tropical 
eddy covariance measurements. In some cases, existing flux 
towers currently not measuring methane flux will be retro-
fitted to include methane sensors. We will identify existing 
methane eddy flux datasets and work with site PIs to QA/
QC data in preparation for inclusion in FLUXNET-CH4 
Version 2.0. We will enhance tropical flux science by holding 
pantropical workshops on eddy covariance data process-
ing to foster regional partnerships for technical guidance 
and knowledge transfer. We will build on the relationships 
developed during workshops and technical assistance to sup-
port the establishment of new flux towers in under-studied 
ecosystems, particularly in Africa and South America.

New flux tower sites will be located along hydrological gradi-
ents to address the seasonality of local flooding conditions, 
and gradient data will be paired with improvements in 
inundation mapping to enhance AI-driven upscaling of 
tropical methane emissions. In addition to establishing new 
flux tower sites, new chamber measurements will be taken 
across sites with eddy covariance towers to aid in chamber/
tower data comparisons. This will allow us to develop the 
workflow to reconcile chamber- and EC-based flux mea-
surements to gain better spatial representation, building 
upon ongoing chamber tower comparisons (Määttä et al. In 
preparation).

This work to expand tropical wetland methane flux mea-
surements will directly support existing efforts to upscale 
FLUXNET-CH4 data using AI/ML models. Currently, 
efforts are hampered by lack of data in the tropics, so this 
proposed expansion in tropical datasets will greatly improve 
our ability to estimate tropical wetland contributions to the 
global methane budget, as well as projected future changes 
in emissions under climate change. The upscaling work 
will be supported by improved seasonal inundation maps 
in tropical ecosystems, as well as the incorporation of new 
metadata and controlled vocabularies required for tropical 
wetland ecosystems (e.g., updating plant functional types to 
include tropical systems).
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Focal Areas
• Application of AI-based surrogate modeling approaches.

• Earth system modeling.

• Model optimization and calibration.

Scientific or Technological 
Challenge
The accurate prediction of CH4 emissions from northern 
peatland systems is crucial for understanding the role of ter-
restrial ecosystems and their feedbacks to the global carbon 
cycle. However, simulating CH4 emissions is challenging as 
peatlands are complex ecosystems that contain a range of 
interacting processes, including vegetation productivity and 
litter inputs, hydrology, microbial decomposition, and differ-
ent pathways for the production and consumption of CH4. In 
particular, those interactions are nonlinear and vary strongly 
across space and over time. Meanwhile, global environmental 
changes (i.e., climate change and elevated CO2) add com-
plexity to CH4 modeling. Capturing all variations and future 
climate scenarios into reliable peatland models of CH4 fluxes 
is a challenge that needs to be addressed.

Rationale
There is a clear need for improved models to accurately 
predict CH4 fluxes given the significant impact that these 
emissions can have on the global climate. Although there are 
a number of CH4 observation sites, data from manipulative 
treatments are limited. The Spruce and Peatland Responses 
Under Changing Environments (SPRUCE) experiment 
introduced whole ecosystem warming and elevated CO2 

treatments into an ombrotrophic bog in northern Minne-
sota, and initial results have indicated strong increases in 
CO2 and CH4 fluxes with warming (Hanson et al. 2020). 
The warming response of CH4 flux is highly sensitive to 
water table position, as evidenced by a 2021 drought that 

strongly reduced CH4 emissions. It is currently unclear 
whether the results from SPRUCE are representative of 
other wetland systems, because the SPRUCE treatments 
take the system far beyond what can be determined from the 
range of natural variability at other sites (Helbig et al. 2022). 
Additionally, running model experiments with Earth Land 
Model (ELM)-SPRUCE to cover large spatial domains 
or parametric uncertainty is computationally expensive. 
Our proposed approach uses AI methods to extend our 
peatland model, ELM-SPRUCE, to other wetlands using 
neural network- based surrogate modeling approaches. Our 
approach will provide high-resolution maps of CH4 fluxes 
and their uncertainties over northern peatlands in North 
America under historical and future climate conditions.

Narrative
Aim 1: Develop a hybrid modular vegetation and hydrol-
ogy framework. In this framework, we could replace expen-
sive model components in ELM-SPRUCE with surrogate 
AI-based representations. Simulating gross primary produc-
tion and canopy-scale fluxes requires an hourly or smaller 
time step and a computationally demanding solution. We 
may use model output to train a neural network represen-
tation that can predict these fluxes at any desired temporal 
resolution as a function of meteorological drivers and two 
key model state variables: soil moisture and leaf area index. 
This module may then be replaced with this surrogate model 
that is much faster to evaluate. A second surrogate model 
representation will be developed for predicting soil mois-
ture, temperature, and water table position. Predicting these 
variables requires knowledge about past states and drivers. A 
recurrent neural network is likely a good choice for making 
these predictions. We could use an interpretable LSTM 
(iLSTM; Lu et al. 2022a) to incorporate these memory 
effects and to provide physical insights about key drivers. 
The two surrogate models may be connected to the physi-
cally based ELM model of vegetation allocation and turn-
over to predict leaf area index and litterfall. This submodel is 
computationally inexpensive and may be simulated at daily 
or greater time steps. This combined modeling system would 

A Hybrid Approach to Improve Earth System Model 
Predictions of CH4 Emissions from Northern Peatlands
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provide estimates of litterfall, nutrient demand, and soil 
conditions for the decomposition model (Aim 2).

Aim 2: Develop physical and surrogate representations 
of decomposition and CH4 models. We can use the stand-
alone version of the Microbe model (Xu et al. 2015; Riccuto 
et al. 2021) that is currently connected to ELM-SPRUCE 
to predict CH4 production through hydrogenotrophic and 
acetoclastic methanogenesis, oxidation, and flux to the 
atmosphere through plant transport, diffusion, and ebulli-
tion. The associated decomposition model will also estimate 
nutrient mineralization that can be coupled to the vegeta-
tion allocation model (Aim 1). It would be computationally 
feasible to perform a large ensemble of Microbe model 
simulations, capturing the impacts under a wide range of 
temperature and moisture conditions, soil carbon distri-
butions, litter inputs, and parametric uncertainty on CH4 
fluxes predicted by the model. This large ensemble could be 
used to train a surrogate model. It is unclear which machine 
learning or AI method will work best for this surrogate 
model, and we might explore multiple methods considering 
both spatial and temporal properties of the simulated fields.

Aim 3: Model calibration and regional simulation. We 
can calibrate the hybrid model in Aim 1 coupled with the 
surrogate Microbe model in Aim 2 to obtain posterior 
parameter distributions for SPRUCE and AmeriFlux sites 
given CH4 flux observations. We can use Markov Chain 
Monte Carlo to obtain these distributions and may also 
explore using invertible neural networks (Lu et al. 2022b) 
to improve the efficiency of the calibration process. Scaling 
the results to boreal North American peatlands can be done 
at high resolution using the Peat-ML product (Melton et 
al. 2022) or other similar products to define peatland areas 
and initial peatland carbon stocks. Downscaled DAYMET 

data is available for historical simulations, and we could also 
perform future simulations using downscaled outputs from 
CMIP6 Earth system models (Rastogi et al. 2021). Histori-
cal and future projections of CH4 fluxes and their uncertain-
ties could be made available to the broader community for 
further analysis.
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Focal Areas
• New methodology/technology

• High-resolution automated datasets

• Lab to field

Scientific or Technological  
Challenge
The production, release, and consumption of methane are 
pore-scale processes with global impact. We currently lack 
the capability to observe and understand pore-scale controls 
over the methane cycle, such as the dynamic role of soil 
moisture and oxygen content, the configuration of complex 
pore structures like microsites in soils, and the interplay 
of different microbial functional groups (e.g., acetogens, 
acetoclastic and hydrogenotrophic methanogens, methano-
trophs). Consequently, models at every scale lack the ability 
to predict net soil methane emissions at the ecosystem level 
given the substantial heterogeneities in soil aggregate size, 
shape, physico-chemical properties, and temporal dynamics.

Rationale
We need a better understanding of how methane is produced 
within and released from soils, but there are numerous 
complexities that have thus far inhibited understanding 
and prediction of gross and net methane fluxes from soils. 
Methane production (methanogenesis) and consumption 
(methanotrophy) occur in soil pores, where heterogeneities 
in pore size and configuration control O2 levels and moisture 
content (Silver et al. 1999). Methanogenesis is restricted to 
anaerobic conditions, which can develop rapidly in response 
to increases in soil moisture and can also persist in microsites 

long after soil macropores have drained and reoxygenated. 
Changes in moisture can differentially affect substrate supply 
for acetoclastic methanogens (solute substrate) and hydrog-
enotrophic methanogens (gas substrate; Sihi et al. 2021). 
Methanotrophs tend to thrive in aerobic conditions, but aer-
obic conditions can also persist inside microsites, fueling the 
consumption of methane even under anaerobic conditions. 
The advent of technologies for simultaneous measurement 
of methane and carbon dioxide in automated flux chambers 
has greatly increased the ability to observe high-resolution 
temporal dynamics [O’Connell et al. 2018, 2022; Bond- 
Lamberty et al. 2020 (CO2 only)]. These kinds of surface 
soil measurements can constrain net methane fluxes, but the 
complexity and spatiotemporal dynamics inside soils remain 
a mystery that inhibits broader methane predictability. The 
same principles and techniques needed for methane can also 
be applied to other redox-sensitive processes like nitrous 
oxide emissions and metal redox transformations.

Narrative
Aim 1: Collect imaging and geochemical data under 
different moisture and O2 scenarios. The evolution, trans-
port, and release dynamics of soil methane can be measured 
in aggregate-scale microenvironments. While measure-
ments in cores may be limited to net fluxes, the information 
content can be greatly improved by high temporal resolu-
tion imaging and spectroscopy. Imaging technologies like 
CT-scanning and neutron tomography could be used to map 
soil moisture and gas content in structured materials such 
as soil aggregates and cores. Neutron imaging could be used 
to assess methane gas bubble transport rates and resistances 
within porous media. Bubbles (void space) would be visual-
ized as lighter spots by imaging against a darker background 
at scales of 25–150 µm. X-ray CT-scanning could be accom-
plished on aggregates or mini-cores (diameter ~1–2 cm) 
to provide 20 µm resolution or resolution of a few µm with 
micro-CT. Soil cores of 5–10 cm in diameter can be used 
to better understand processes in macropores and provide 
correlations with bulk properties, such as gas flux, water 
saturation, and organic C content. Porosity information 
(e.g., pore volume fraction, pore size, and pore connectivity) 

The Potential for Artificial Intelligence to Inform Pore-Scale 
Patterns of Methane Production, Release, and Consumption Using 
Imaging, Real-Time Flux Measurements, and Microbial Modeling
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from imaging can be related to methane storage and release. 
3D imaging can be used to reconstruct or track a bubble as it 
migrates through time, at scales of sub-µm to mm. Imaging 
may also identify active microorganisms indicative of  “hot 
spots” of activity. At the smallest scales, synchrotron spec-
troscopy can identify metal redox species in the solid phase, 
which can be key indicators of the redox environment and 
can alter the direction and outcomes of redox reactions (e.g., 
iron and sulfate reduction can inhibit methanogenesis; Bear 
et al. 2021).

Aim 2: Configure AI models to match imaging, geo-
chemical, and methane flux data. Convolutional neural 
networks (CNN) can be used to learn the relationships 
between soil structure and methane fluxes, and soil moisture 
and O2 content (Liu et al. 2022). AI can generate new 
images to fill the data gaps using generative models, such 
as GAN for normalizing flow and diffusion models. There 
are also ML models for feature extraction, segmentation, 
and clustering; these can be used to guide and optimize 
image segmentation during CT or neutron scanning (e.g., 
Venkatakrishnan et al. 2021). We can use a regionalized 
CNN model for image segmentation to extract interesting 
features and learn the pore volume in the soil core from the 
image, and also learn the relationships between pore volume 
and methane flux, and moisture and O2 content. For time 
series data, we can use a long short-term memory network. 
If the data is an image, we can use CNN. If the data is like a 
network containing both spatial and temporal information, 
we can use a graph neural network.

Aim 3: Allow AI models to constrain model processes 
and provide parameters for different scenarios. We 
can use AI to test and parameterize existing models 
(Xu et al. 2015; Sihi et al. 2021) that contain key mecha-
nisms, such as acetoclastic and hydrogenotrophic methano-
gens, methanotrophs, acetogens, dissolved organic carbon 
supply, sulfate concentrations, O2 concentrations, and pH 
changes. Other measured constraints, such as Eh and other 
alternative electron acceptors, could aid convergence of 
the AI and microbial functional models. ML models can 
facilitate process-based model simulations by building a 
fast-to-evaluate surrogate model to reduce computational 
cost of the process-based model to facilitate parameter esti-
mation or uncertainty quantification. Invertible neural net-
works can be used to build a surrogate model and estimate 
the model parameters at the same time as the process-based 
models, thereby permitting convergence between process- 
and ML-models.

Aim 4: Match the trained AI model to complex field- 
and lab-scale data to enable site-level predictions and 
beyond. Scaling up, the trained AI model could be used 
to match existing automated chamber data at lab and field 
scales (O’Connell et al. 2018, 2021; Sihi et al. 2021; new 
datastreams at the SPRUCE experiment). When connected 
with time series data (e.g., soil moisture, O2, methane 
fluxes, Eh, etc.), interpretable ML models can help explain 
the importance of various drivers and their contributions 
to bulk methane flux predictions from the field. We can 
quantify the uncertainty of both the ML- and process-based 
model; analyze the contribution of prediction uncertainty 
from the model structure, model parameter, and data; and 
use this uncertainty analysis to guide data collection and 
further improve model development. Finally, ML can assist 
with multi-scale modeling to extrapolate learning to sites 
lacking imaging and pore-scale data. This project would pro-
vide new insights into key microsite dynamics and improve 
prediction and controls over net methane fluxes in soils.
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Focal Areas
• The importance of high-potential datasets (omics data) 
and the combination of multiscale data across spatial and 
temporal scales may lead to new scientific insights. 

• Key uncertainties and knowledge gaps where new meth-
odology, infrastructure, or technology can advance predic-
tive understanding of the methane cycle.

Science or Technological 
Challenge
Methane (CH4) is the second most abundant anthropo-
genic greenhouse gas after carbon dioxide, accounting for 
about 20% of global emissions. Although gene-level analysis, 
ground-level observations, and global-scale Earth system 
models have separately advanced in interpreting microbial 
regulation on CH4 emission and benchmarking global CH4 

emission prediction, the accurate estimation of global CH4 

sources and sinks remains a significant challenge. 

Challenge 1. Soil CH4 emission is driven by specific soil 
microbes and their released enzymes. However, the spatial 
distribution of CH4 emission-associated microbial functions 
and their interactions with other microbial functions is still 
unclear. This knowledge gap limits our ability to employ site-
level scientific findings to interpret ecosystem-level methane 
emission uncertainty. 

Challenge 2. Soil CH4 emissions highly fluctuate with 
spatial heterogeneity and temporal change in multiple envi-
ronmental factors. Interpreting the nonlinear regulation of 
multiple environmental factors on soil CH4 emissions is still 
difficult, especially considering the potential acclimation 
and adaptation of soil microbial communities to changing 
environments. The lack of this knowledge brings signifi-
cant uncertainty in projecting soil CH4 emissions under 
climate change. 

Challenge 3. Although there are increased efforts to repre-
sent microbial-mediated soil CH4 emission schemes in the 
Earth system models (ESMs), the scale difference between 
the Earth system model and mechanistic understanding of 
the CH4 emission process at the gene or lab scale makes 
it challenging to utilize emerging gene-scale observations 
to parameterize microbial-mediated soil CH4 emission 
schemes in ESMs.

Rationale
Overcoming the above challenges requires performing a 
regional or global-scale investigation of the distribution of 
CH4 emission-associated microbial functions and elucidat-
ing how the relative abundances of these microbial functions 
for CH4 emission vary with spatiotemporal changes in envi-
ronmental conditions. Although the emergence of omics 
technology has brought data to investigate this question, the 
spatiotemporal representation of these data is still limited. 
The interpretation of environmental regulation on omics- 
informed gene function associated with CH4 emission is 
highly varied with sampling location. In my previous work, 
we have harnessed the power of artificial intelligence (AI) 
and omics data to map soil microbial function involved in 
soil organic matter decomposition (Flan et al. In review). 
This study highlights the possibility of synthesizing global- 
scale omics data to identify microbial functions associated 
with CH4 emission and integrating this information with 
corresponding environmental information to predict the 
spatiotemporal dynamics of microbial functions for CH4 
emission in response to environmental change. Moreover, 
to enable the utilization of this gene-scale environmental 
regulation on microbial CH4 emission function to advance 
soil CH4 flux simulation in ESMs, an effective scaling 
methodology is required. Microbial-mediated CH4 emission 
is an enzyme-catalyzed process and can be calculated using 
the Michaelis-Menten equation as a function of enzyme 
abundance, substrate concentration, and kinetics parame-
ters. Therefore, it’s possible to utilize the Michaelis-Menten 
equation to integrate AI prediction of CH4 emission enzyme 

Elucidating Environmental Regulation on 
Microbial-Mediated Soil Methane Emission Using 
Gene-to-Ecosystem Level Data and Artificial Intelligence
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functional information with process-based CH4 flux simula-
tion in ESMs.

Narrative
To overcome current challenges for elucidating the uncer-
tainty from soil CH4 emission, I propose to develop an 
integrated research framework that harnesses the power 
of gene-to-ecosystem scale data, applies AI technology for 
environment-microbial function prediction and model 
parameter optimization, and mechanistically advances the 
representation of soil CH4 emission in ESMs. In detail, this 
research frame will need to include: (1) identifying the 
spatial distribution of microbial enzymes associated with 
CH4 emission by integrating omics and environmental 
information across diverse sites to develop an AI prediction, 
(2) elucidating environmental regulation on the dynamics 
of soil enzymes for CH4 emissions by integrating temporal 
omics and environmental data to train an AI model for 
predicting the response of soil enzyme functional com-
position in response to temporal environmental change, 
(3) assessing the implication of environmental regulation on 
CH4 emissions enzyme for soil CH4 emission by coupling 
AI prediction for microbial function for CH4 emission 
in response to environmental change with process-based 
CH4 flux simulation in the E3SM land model (ELM). The 
implementation of this research framework will deliver 

an integrated dataset that pairs microbial CH4 function 
information with corresponding environmental information 
at the global scale. Applying this dataset to AI prediction 
for the environmental feedback of microbial CH4 function 
information will enable us to elucidate climate, edaphic, and 
vegetation regulation of the composition and abundances of 
microbial enzyme functions involved in CH4 emission at the 
regional or global scale. 

Besides this AI application, a surrogate- based AI model 
will also be employed to optimize new parameters used in 
omics-informed soil emission simulation in ELM. Applying 
coupled AI model and ELM prediction will leverage omics 
data applications in constraining uncertainty in soil CH4 
emission and provide a deep insight into microbial- mediated 
soil CH4 emission under changing environments. The 
success of this study will advance the DOE BER program by 
overcoming current technical bottlenecks in gene-to-Earth 
system prediction for the global methane cycle and advance 
the DOE E3SM model capacity for predicting soil CH4 
emission under more extreme climate conditions.

Reference
Fan, C., et al. “Harness the Power of Machine Learning and Omics to Identi-
fy Microbial Functional Composition Across Diverse Environments,” JGR 
Biogeoscience. In review.
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Focal Area
Automated or real-time data capture and processing or fed-
erated learning for improvements in measurement coverage.

Science or Technological 
Challenge
How to use recent advances in AI to obtain automated mea-
surements of methane flux from distributed sensor networks 
(particularly in soil and agricultural systems) and process 
the collected data efficiently.

Rationale
Research needs and challenges. One of the main contrib-
utors to the methane (CH4) cycle is the CH4 gas emitted 
by microbes in soils that is significantly impacted by human 
activities (Nazaries et al. 2013). Microorganisms from other 
sources, such as landfills, livestock, and the exploitation of fos-
sil fuels, also emit CH4. To better understand methane flux 
under a wide range of environmental conditions and eco-
logical stressors, various programs (e.g., FLUXNET-CH4, 
COSORE; Bond‐Lamberty et al. 2020; Delwiche et al. 
2021) are actively collecting data spatiotemporally that 
are commonly used in process models (e.g., PFLOTRAN, 
GCAM; Hammond et al. 2020; Bond‐Lamberty et al. 2023) 
in a coupled modeling-experimental (ModEx) approach. 
However, there are some challenges associated with this 
traditional ModEx approach, some of which were recently 
disclosed within the AI4ESP workshop report highlights 
(Hickmon et al. 2022). The report highlighted how to use 
recent advances in AI to overcome some of the traditional 
ModEx approach challenges. However, many data analysis 
challenges still need to be answered (Hickmon et al. 2022). 
Within the context of the methane cycle, we believe there 
are knowledge gaps that AI would enable us to address by 

AI for Advanced Sensor Data Collection, Automation, 
and Processing for the Methane Cycle

integrating modeling and analysis activities across field- and 
lab-scale experiments, particularly related to soil and agricul-
tural systems. Those gaps are:

•  Quality of the collected data from sensor networks. 
This includes identifying methane flux signatures from 
sensor data (e.g., microbial activity due to anthropogenic 
stressors, extreme events),  filling in data gaps, and associ-
ated data worth analysis.

•  When, how, and where to collect data. It is not feasible 
to measure fluxes all the time. Thus, we need a way to 
decide when, how, and possibly even where to measure 
methane flux smartly and efficiently.

•  Dealing with big data. When advanced sensors are used 
(e.g., multispectral cameras), the amount of data collected 
is substantial. So, efficiently processing this data at the 
sensor edge is needed.

Our proposed approach to address these challenges is 
to develop self-aware and intelligent sensor nodes. This 
self-awareness is achieved by advancing and tailoring our 
AI@SensorEdge workflow (e.g., edge-to-cloud intelligence; 
Mudunuru 2019a, b; Talsma et al. 2023) as shown in Fig. 1, 
next page.

Narrative
Scientific and technical description. An AI@SensorEdge 
workflow provides a transformational way to integrate multi-
modal data through sensor fusion (e.g., combining geophys-
ical, geochemical, and hydrological sensor data sampled at 
different frequencies). Moreover, efficiently harnessing the 
connectivity of intelligent sensors through edge and fog com-
puting will result in an advanced understanding of soil and 
agricultural systems under disturbances and extreme events 
in near real-time. Development in advanced flux data acqui-
sition systems, sensor network design for soil and farming 
systems, hardware-related efforts (e.g., AI-enabled acceler-
ators), lightweight AI  models (e.g., energy-efficient), and 
cybersecurity for edge computing will advance the proposed 
science (Friha et al. 2022). This workflow will recognize:

•  Data quality. AI-based local data worth analysis will 
determine if sensor data or signals might contain useful 
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Fig. 1. AI@SensorEdge workflow to extract actionable information and discover knowledge from methane flux sensor net-
works under disturbances. [Credit: Mudunuru et al. 2021]

information to detect flux signatures and underlying 
patterns. The discovered signatures will be provided to 
process models (e.g., PFLOTRAN) and then converted to 
actionable intelligence (e.g., system evolution) at the edge.

•  Data collection. AI@SensorEdge can accelerate the 
collection of informative data by creating a digital twin for 
soil and agricultural systems (e.g., through IoT). We will 
optimize the location of sensors by exploring the system 
behavior in digital space.

•  Data volume. Edge computing-based AI models [e.g., 
RNNPool (Saha et al. 2020); SmartTensors AI plat-
form (EnviTrace)] can be leveraged to compress data 
efficiently. This compressed data can be transferred to 
the cloud and HPC systems through 5G-enabled AI@
SensorEdge programming models (Beckman et al. 2020; 
Argonne National Laboratory, n.d.; University of Chicago, 
n.d.; Dennis et al. n.d.; TensorFlow Developers 2023).

AI@SensorEdge workflow interfacing with FAIR data 
sources. The real-time flux measurements collected from 
sensor networks can be interfaced with existing resources 
and databases such as:

•  Soil chemistry from Web Soil Survey (NRCS). To 
understand the impact of soil chemistry to methane out-
put. www.nrcs.usda.gov/conservation-basics/natural-re-
source-concerns/soils/soil-geography.

•  Farming data. For example, types of crops planted in the 
ground and livestock. quickstats.nass.usda.gov.

•  FLUXNET-CH4. Methane flux measurements. 
fluxnet.org/data/fluxnet-ch4-community-product.

•  COSORE. Soil respiration and greenhouse gas flux data. 
github.com/bpbond/cosore.

•  Soil Respiration Database. github.com/bpbond/srdb.

http://www.nrcs.usda.gov/conservation-basics/natural-resource-concerns/soils/soil-
http://www.nrcs.usda.gov/conservation-basics/natural-resource-concerns/soils/soil-
https://quickstats.nass.usda.gov/
https://fluxnet.org/data/fluxnet-ch4-community-product/
https://github.com/bpbond/cosore
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•  Flux measurement sites for carbon, water, and/or 
energy. AmeriFlux Network, ameriflux.lbl.gov; Leaf Web, 
www.leafweb.org; SPRUCE experimental databases, 
mnspruce.ornl.gov.

Pre-trained AI models can be embedded on these distrib-
uted sensor networks through smart computing devices 
such as Raspberry Pi CM4+. These intelligent edge devices 
also provide a venue to interface with next generation WiFi 
and 5G networks. The flux data acquired from these sensor 
networks and processed using AI algorithms can be made 
reusable and the findings reproduceable through FAIR data 
sources such as ESS-DIVE and EMSL-GitHub.
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Focal Areas
• This white paper addresses how artificial intelligence 
(AI) or machine learning (ML) algorithms can improve the 
predictability of and reduce uncertainties in methane (CH4) 
fluxes by integrating complementary data collected at broad 
spatial and temporal scales. 

• We will also address how AI/ML approaches can transfer 
the knowledge gained from fine (microsite)-scale measure-
ments to field-scale observations and regional- and global- 
scale budgets.

Science or Technological 
Challenge
We will focus on processes related to methane (CH4) 
production and consumption in terrestrial ecosystems and 
terrestrial-aquatic interfaces. We will address several data-
model integration challenges that directly support BER pri-
orities in enhancing representation of ecosystem processes 
to improve predictive models. Process-based Earth system 
models like E3SM lack representations of complex, non- 
linear processes related to hot-spots and hot-moments in 
CH4 fluxes due to poor understanding of underlying mech-
anisms related to productions and oxidations of CH4 (Xu et 
al. 2016). AI/ML approaches can be used to learn patterns 
in the data and model errors and use them to inform model 
structures and equations and correct process-based model 
errors. Complex, nonlinear processes regulating CH4 
dynamics are difficult to unravel and represent in process- 
based models. Some correlations may be spurious and not 
helpful to inform model structure, but AI/ML can help 
expand human understanding of predictor- response rela-
tionships across broad spatial and temporal scales, which, 
when combined with researcher knowledge, experience, and 
judgment, can increase our capability to glean insight from 
complex data. Thus, we can use AI to advance an integrated, 
robust, and scale-aware predictive understanding of interact-
ing biogeochemical, hydrological, and biophysical processes 

that enable a new paradigm for improved predictability of 
CH4 fluxes.

Rationale
Narrowing uncertainty in regional and global CH4 budgets 
is essential for defining necessary policies for climate change 
mitigation. Significant challenges in reducing uncertain-
ties arise from our incomplete understanding of different 
underlying processes related to production, consumption, 
and net fluxes of CH4 from terrestrial and terrestrial-aquatic 
interfaces. AI-enabled predictability of methane emis-
sions can close this research gap by cross-scale integration 
of measurements from multiple sources and disciplines. 
Insights obtained from laboratory-scale measurements 
(e.g., dynamics of methanogens or methanotrophs) can 
inform field-scale observations (e.g., methane fluxes at the 
biosphere- atmosphere boundary), which could explain pat-
terns in remotely sensed measurements (e.g., atmospheric 
concentration of CH4 at regional and global scales).

Narrative
The growing volume of data collected across multiple scales and 
disciplines offers opportunities to improve AI-enabled predict-
ability of CH4 fluxes from terrestrial and wetland ecosystems.

Use AI to synthesize automated methane flux mea-
surements and high-frequency sensor data. Techno-
logical advances will allow quantification of CH4 fluxes 
at sub-daily resolutions (e.g., eddy covariance data and 
automated chamber data for soil and ecosystem fluxes). 
Coupling these measurements with in situ sensors for soil 
temperature and moisture can help us identify covary-
ing patterns with seasonal variations and synoptic (i.e., 
intra-seasonal) oscillations in redox conditions. In 2018, 
AmeriFlux launched an “Action Theme Year” called Year 
of Methane (ameriflux.lbl.gov/year-of-methane/year-of-
methane/), which brought together the CH4 flux commu-
nity to synthesize high- frequency measurements of CH4 
fluxes at the ecosystem scale across FluxNet sites (Knox 
et al. 2019). Parallel synthesis activities elsewhere resulted 
in comprehensive datasets of CH4 fluxes from terrestrial 

Improving Predictability of Methane Emissions 
from Terrestrial Ecosystems and Terrestrial-Aquatic 
Interfaces through Machine Learning Approaches

https://ameriflux.lbl.gov/year-of-methane/year-of- methane/
https://ameriflux.lbl.gov/year-of-methane/year-of- methane/
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ecosystems (e.g., boreal and Arctic sites, Kuhn et al. 2021) 
and terrestrial-aquatic interfaces like coastal wetlands (e.g., 
Coastal Carbon CH4 working group, serc.si.edu/methane-
working- group). Integrating AI/ML algorithms with these 
continuous measurements at the ecosystem scale, and other 
community databases like COSORE, can identify contribu-
tions of different ecosystem components (e.g., soil, plant) in 
the net fluxes of CH4 at the biosphere‐atmosphere interface 
(Megonigal et al. 2008; Bond‐ Lamberty et al. 2020).

Leverage multi-disciplinary data collected at various 
spatial and temporal scales to unravel competing mech-
anisms. Competing processes related to productions and 
consumptions (or oxidations) of CH4 can regulate net CH4 
fluxes (Conrad 1989). State-of-the-art techniques, such as iso-
tope pool dilution (von Fischer et al. 2002) and gas push-pull 
technique (Urmann et al. 2005), are now available to separate 
net CH4 fluxes in gross rates of production and consumption 
in the field. Omics data available from observational networks 
like MONet (Molecular Observation Network) and NEON 
(National Ecological Observation Network) can inform 
spatial variations in microbial functional groups related to 
CH4 production (methanogens) and oxidation (methano-
trophs) at the continental scale (Xu et al. 2015; Sihi et al. 
2021b). Geochemical factors like redox-sensitive elements 
or alternative electron acceptors (e.g., iron) can further 
regulate net CH4 fluxes by influencing the rates of anaerobic 
oxidation of CH4 in ecosystems across broad environmental 
gradients (Teh et al. 2008; Blazewicz et al. 2012; Ettwig et 
al. 2016; Zheng et al. 2019; Sulman et al. 2022). Synthesis of 
knowledge obtained from laboratory-scale studies can further 
quantify the potential effects of microbial, geochemical, and 
biophysical (redox) processes on observed CH4 fluxes in the 
field. Leveraging laboratory, field, and airborne measurements 
across multiple DOE-funded projects (e.g., NGEE- Tropics, 
NGEE-Arctic, AmeriFlux, SPRUCE, and COMPASS) 
can improve our understanding of CH4 cycle processes in 
critical ecosystems. AI/ML algorithms can upscale these 
fine (microsite)-scale measurements of underlying processes 
to large-scale fluxes by integrating spatial heterogeneity of 
covarying factors. We expect that implementing explain-
able ML approaches into the ModEx (model-experimental 
coupling) framework can improve prediction of hot spots 
and hot moments (Sihi et al. 2021a) and reduce uncertainty 
in regional (Zona et al. 2016) and global CH4 budgets 
(www.globalcarbonproject.org/methanebudget/).
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Focal Area
When successful, this effort will identify the key mecha-
nisms that govern CH4 wetland emissions and bridge the 
gap between top-down and bottom-up estimations.

Science or Technological 
Challenge
Large discrepancies exist in global CH4 emission esti-
mations between bottom-up and top-down methods. 
Since 2012, global CH4 emissions have been tracking the 
warmest scenarios assessed by the Intergovernmental 
Panel on Climate Change (IPCC). Bottom-up methods 
suggest almost 30% larger global emissions (737 Tg CH4 /
year; range 594–881) than top-down inversion methods. 
The most important source of uncertainty in the methane 
budget is attributable to natural emissions, especially those 
from wetlands and other inland waters (Saunois et al. 
2020). AI/ML has successfully brought observational data’s 
insights into model parameterization and calibration. With 
the accumulation of available flux measurements, there is an 
opportunity to use AI/ML to bridge the gap between top-
down and bottom- up estimated wetland CH4 emissions.

Rationale
There are numerous factors that contribute to the uncer-
tainty in process-based estimates of CH4 emissions from 
wetlands, including model structures, assumptions, 
parameterization, and selection of forcing data. However, 
among these sources of uncertainty, the lack of CH4 flux 
measurements is a particularly significant factor. In addition, 
the sensitivity of CH4 fluxes to environmental controls is 
not well understood, which also limits explicit representa-
tions of many mechanistic processes in models. Top-down 
methods assimilate atmospheric CH4 data and have better 
constraints on emission estimations, but they can only 

obtain a budget- level estimation of CH4 emissions without 
additional information. Our hypothesis is that unknown 
mechanistic processes hamper the convergence of top-down 
and bottom-up CH4 estimations.

Narrative
Large discrepancies exist in global CH4 emission estima-
tions between bottom-up and top-down methods. With 
improved partition of wetlands and other inland waters, 
wetland emissions are about 35 Tg CH4 /yr lower than 
previously published budgets (Kirschke et al. 2013; Saunois 
et al. 2016). However, the overall discrepancy between 
bottom-up and top-down estimates has been reduced by 
only 5% compared to Saunois et al. (2016) due to a higher 
estimate of emissions from inland waters, highlighting the 
urgent need for an understanding of the mechanisms gov-
erning wetland methane emissions.

Bottom-up estimated CH4 fluxes range from simple 
empirical models to detailed process-based model simu-
lations, providing prior fluxes for top-down estimations. 
A process-based model is also the land component of an 
Earth system model and directly drives climate projections. 
Previous simulations using process-based models have 
shown a significant level of uncertainty in estimating wet-
land CH4 emissions at regional and global scales. This uncer-
tainty can be attributed to several factors, such as model 
structures, assumptions, parameterization, and choice of 
forcing data. Moreover, the impacts of environmental factors 
on CH4 fluxes are not entirely clear, which further restricts 
the explicit representation of various mechanistic processes 
in models.

Methane wetland emissions are inextricably linked to 
hydrology. Accordingly, there is considerable intra- and 
inter-annual variation in emissions in response to variations 
in precipitation and groundwater. CH4 model studies face a 
significant challenge in capturing the complex interactions 
among climate, soil, and ecosystems. Explicitly representing 
these interactions in process-based models is difficult with-
out a solid comprehension of the underlying processes.

Merging Top-Down and Bottom-Up Estimated 
Wetland CH4 Emissions Using AI/ML
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AI/ML has successfully incorporated insight from observa-
tional data into model parameterizations and calibrations. 
Applying AI/ML to CH4 wetland models’ parameters and 
variables could further improve CH4 emission estima-
tions in the domains of recalibration, bias correction, and 
uncertainty reduction. It is particularly useful in quantifying 
the responses of nonlinear processes, like CH4 wetland 
emissions. With the accumulation of available flux measure-
ments, there is opportunity to use AI/ML to bridge the gap 
between top-down and bottom-up estimated wetland CH4 
emissions.

Firstly, we use AI/ML methods (e.g., feature selection, 
dimension reduction, surrogate modeling) to find the key 
environmental control variables and mechanisms that 
govern CH4 fluxes using eddy covariance flux data and the 
spatially explicit data of climate, hydrology, and soil proper-
ties (e.g., soil moisture, temperature, water table level, water 
storage, etc.).

Secondly, we use AI/ML methods (e.g., smart search, 
gradient- based, surrogate-assisted, or Bayesian) to optimize 
parameters associated with key control variables in the 
CARbon Data MOdel fraMework (CARDAMOM) CH4 
wetland model, and correct CH4 wetland emission biases. 
Bloom et al. (2017) developed WetCHARTs, a simple, data-
driven, ensemble-based model that produces estimates of 
CH4 wetland emissions based on one heterotrophic-respi-
ration model, CARDAMOM, and constrained by obser-
vations of precipitation and temperature. CARDAMOM/

WetCHARTs will serve as a working surrogate for an Earth 
system-compliant land model, necessary for us to build the 
AI/ML capability.

Thirdly, we link atmospheric CH4 concentrations with CH4 
emissions through an atmospheric transport model and 
investigate governing processes that affect the temporal 
and spatial variations of atmospheric CH4 concentrations. 
This step could possibly be done by spatiotemporal pattern 
recognition, AI/ML-based error modeling, and physics- 
informed AI/ML. The key is to determine the source region 
of measured atmospheric CH4 concentrations.

The workflow will be modularized to be easily transfer-
able, generalizable, and efficiently deployable for any 
terrestrial biogeochemistry model, such as the E3SM land 
model (ELM).
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Focal Areas
Our white paper is framed around the focal area of the 
importance of high-potential datasets and how combining 
multiple datasets leads to scientific insights into the methane 
cycle. Our approaches in this white paper are also aligned 
with improving measurement coverage toward reducing 
uncertainty in mechanistic models.

Science or Technological 
Challenge
The Environmental Molecular Sciences Laboratory (EMSL) 
spearheads a 10-year National Molecular Observations 
Network (MONet; Pacific Northwest National Laboratory) 
initiative for BER, with the objective to build a national 
network of environmental sampling and sensing sites along 
with methods to provide molecular-level and micro-
structural information on soil, water, resident microbial 
communities, and biogenic emissions. For instance, in the 
current phase of the MONet initiative, data types, including 
metagenomics, respiration, mineral organic matter, hydrau-
lic properties, and geochemistry, are being collected from 
core samples from a wide range of ecoregions within the 
United States (EMSL). In coordination and partnership 
with other observational networks (e.g., ARM, AmeriFlux, 
NEON), the objective is to make these molecular obser-
vations and the data from field-deployed sensors available 
to the BER community. To make these multi-modal data 
streams accessible to domain scientists, modelers, and data 
scientists who study the methane cycle, we aim to build a 
suite of data and modeling products and avail them to the 
BER community via the MONet portal. EMSL is strongly 
positioned to bridge fundamental ModEx gaps by building 
key products for the BER community. We envision that 
AI-based methods will be central to these products and are 
key to accelerating BER community science toward eliciting 
the mechanics of the methane cycle.

Coupling AI-Based Modeling and Molecular 
Soil Organic Matter at Regional Scale

Rationale
Several hydro-biogeochemical natural and anthropogenic 
processes in the soil, water, and atmosphere, and their com-
plex interactions, contribute to methane fluxes. Character-
ization of the underlying fundamental molecular- scale and 
microstructural processes (e.g., geochemistry, omics, etc.) is 
needed to parameterize and validate the individual process 
models and their coupling. One of the major contributors 
to an increase in uncertainty in models is the lack of such 
data. The MONet initiative at EMSL aims to facilitate the 
availability of such data to advance model-experiment inte-
gration and to enhance the predictive power of multiscale 
models for carbon and nitrogen fluxes including the meth-
ane cycle. Specifically, the key gaps that we will address are:
•  Lack of multi-modal molecular and microstructural data 

with metadata capture that follow FAIR principles for 
soils across the United States, and the resident microbes 
and their availability to the BER community.

•  Availability of molecular and microstructural data (e.g., 
analysis, integration, and visualization) and modeling 
tools (e.g., pore models for transport), along with tools 
that integrate data and models (e.g., parametrization, 
sensitivity analysis, uncertainty quantification).

•  AI methods can potentially play a major role in these tools 
and workflows. However, AI methods need data (Gröger 
2021) across plot, ecosystem, and regional scales, and the 
collection of multi-modal molecular and microstructural 
data is thus needed.

The EMSL MONet soil characterization program, which 
began user operations in February 2023, provides such 
molecular data at regional and CONUS scales. MONet 
is collecting and analyzing soil cores using standardized 
workflows that can be optimized to provide data critical to 
AI-informed studies of the methane cycle.

Narrative
Our overall approach is to build a web-based data platform 
to make MONet observational data, along with AI-based 
data and modeling tools, available to the BER community. 
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We briefly detail our vision for the role of AI within data and 
modeling software products on this platform:

•  AI and graph-based methods for data analysis and 
visualization. Classical unsupervised methods, such as 
principal component analysis (Wang and Zhang 2012), 
and non-negative matrix factorization (Aittokallio and 
Schwikowski 2006), have proven to be powerful ways 
of identifying patterns and dominant features, and in 
correlating multi-modal datasets. They can be used to 
identify key signatures in multi-dimensional datasets and 
reduce dimensionality to visualize data effectively. For 
instance, our preliminary non-negative matrix factoriza-
tion analysis on soil biogeochemical and microbial data 
from EMSL’s 1000 Soil Pilot project (a pilot program to 
MONet), showed clear correlations between dissolved 
organic matter and environmental stresses, such as flow, 
pH, and wildfire occurrence. In addition to making unsu-
pervised ML-based tools available, we will build visual-
ization tools based on network theory and graph-based 
methods for clustering and finding similarities in multi- 
modal data streams (Tang et al. 2021).

•  AI for multiscale modeling. To enable the trans-
fer of information (or upscale) from molecular- and 
microstructural - scale (pore-scale) to the site, regional, 
and eventual global Earth system models, AI-based 
methods can play a significant role. For example, MONet 
will provide users with pore-scale data and models to 
perform flow and reactive transport simulations, which will 
then inform averaged parameters, such as reaction rates 
or permeability, needed in site/regional scale models. 
AI methods such as deep learning (Ahmmed et al. 2021; 
Tang et al. 2021) can train on data from such simulations 
and build surrogate models for upscaling information. 
These surrogate models will represent the relationships 
between molecular and microstructural information of 
interest to the user. Akin to constitutive models or equa-
tions of states, AI-based surrogate models can be used in 
larger-scale simulations.

•  AI for data-model integration. Recently, AI-based mod-
els based on deep learning, including approaches that con-
strain balance laws (Karra et al. 2021) or mimic balance 
laws (Haghighat et al. 2021), have become popular. These 
AI-based models are much faster to run and have been 
effective for parametrization (Raissi 2018), and quan-

tifying uncertainty (Gasmi and Tchelepi 2022). We will 
provide users with workflow components that will enable 
these analyses.
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Appendix E

Image Credits

Drone-based surface emission monitoring data is 
utilized to map methane emissions. Reprinted under 
a Creative Commons Attribution (CC BY) license from 
Abichou, T., et al. 2023. “Using Ground- and Drone-
Based Surface Emission Monitoring (SEM) Data to 
Locate and Infer Landfill Methane Emissions,” Methane  
2, 440-451. DOI:10.3390/methane2040030.

Satellite orbiting over Earth. [Courtesy Adobe 
Stock]

Niwot Ridge AmeriFlux tower near 
Nederland, Colo. [Courtesy AmeriFlux]

Aerial drone. [Courtesy Adobe Stock]

The Atomospheric Radiation Measurement 
(ARM) user facility employs this G-1 aircraft 
to measure a range of aerosol and cloud prop-
erties, as well as collect gas-phase measure-
ments. [Courtesy U.S. Department of Energy 
Atmospheric Radiation Measurement (ARM) 
user facility.]

Eddy covariance system deployed at the Ato-
mospheric Radiation Measurement (ARM) 
Central Facility and operated under the 
ARM Carbon Project umbrella at Lawrence 
Berkeley National Laboratory. [Courtesy 
Lawrence Berkeley National Laboratory]

A researcher in a canoe uses a floating cham-
ber and a gas analyzer to measure methane 
emission from Old Woman Creek wetland in 
Ohio. [Courtesy The Ohio State University]

A researcher extracts DNA from a field- 
collected wetland sediment sample. 
[Courtesy Colorado State University]

A scientist sequences genetic material at the 
DOE Joint Genome Institute ( JGI). [Cour-
tesy JGI]

Methane leak detection and measurement via 
satellite. [Courtesy GHGSat]

A graph indicates methane emission increasing over 
time as measured by field chambers. [Reprinted with 
permission from Elsevier from Villa, J. A., et al. 2021. 
“Ebullition Dominates Methane Fluxes from the Water 
Surface Across Different Ecohydrological patches 
in a Temperate Freshwater Marsh at the End of the 
Growing Season,” Science of the Total Environment 767, 
14498. DOI:10.1016/j.scitotenv.2020.144498.]

Evaporative Stress Index at Coachella Valley, Calif., 
derived from ECOSTRESS. [Courtesy NASA]

A graph depicting methane flux measurements. 
[Courtesy Lawrence Berkeley National Laboratory]

A graph showing methane emission increasing over time 
as measured by field chambers. Reprinted with permission 
from Elsevier from Villa, J. A., et al. 2021. “Ebullition Domi-
nates Methane Fluxes from the Water Surface Across Differ-
ent Ecohydrological patches in a Temperate Freshwater Marsh 
at the End of the Growing Season,” Science of the Total Envi-
ronment 767, 14498. DOI:10.1016/j.scitotenv.2020.144498.

Bathyarchaeota subgroups and operational taxonomic 
units display phylogenetically conserved abundance pat-
terns in the Old Woman Creek wetland, Ohio, correlating 
to geochemical measures. Reprinted with permission from 
Wiley from Narrowe, A. B., et al. 2017. “High-Resolution 
Sequencing Reveals Unexplored Archaeal Diversity in Fresh-
water Wetland Soils,” Environmental Microbiology 19(6), 
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Genetic sequence data. [Courtesy Adobe Stock]

Image captions and credits for Fig. 4.1, p. 26.



March 2024    U.S. Department of Energy Biological and Environmental Research Program

Appendix F

Acronyms and Abbreviations
16S 16S ribosomal RNA sequencing

AI artificial intelligence

AI4CH4  Artificial Intelligence for the 
Methane Cycle workshop

AI4ESP  Artificial Intelligence for Earth 
System Predictability workshop 
series

ANN artificial neural network

API  application programming interface

ARM  Atmospheric Radiation 
Measurement user facility

ASCR  DOE Advanced Scientific 
Computing Research program

BER DOE Biological and  
 Environmental Research program

BETO  DOE Bioenergy Technologies 
Office

BSSD  BER Biological Systems Science 
Division

CH4 methane

CLM4Me  Community Land Model, 
version 4.0, for methane

CMIP5  Coupled Model Intercomparison 
Project Phase 5

CMIP6  Coupled Model Intercomparison 
Project Phase 6

CNN convolutional neural network

CO2 carbon dioxide

COMPASS  Coastal Observations, 
Mechanisms, and Predictions 
Across Systems and Scales

COSORE  Continuous Soil Respiration 
database

CPU central processing unit 

DBTL design-build-test-learn cycle

DNN deep neural network

DOE U.S. Department of Energy

DOI digital object identifier

E3SM Energy Exascale Earth System   
 Model

EESSD  BER Earth and Environmental 
Systems Sciences Division

ELM E3SM’s Land Model

ESnet ASCR Energy Sciences Network

ESS-DIVE  Environmental System Science 
Data Infrastructure for a Virtual 
Ecosystem

FAIR  findability, accessibility, 
interoperability, and reusability

FLIR forward-looking infrared

GAN  generative adversarial network

GCAM Global Change Assessment Model

GEM genome-enabled model

GSA global sensitivity analysis

HPC high-performance computing

ICON  Integrated Coordinated Open 
Networked science principles

ILAMB  International Land Model 
Benchmarking

IMEO  United Nations Environment 
Programme’s International 
Methane Emissions Observatory

IPCC  Intergovernmental Panel on  
Climate Change
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KBase  DOE Systems Biology 
Knowledgebase

LLM large language model

LSTM long short-term memory network

MCMC  Markov Chain Monte Carlo 
Bayesian technique

MIGS  minimum information about a 
genome sequence

MIMARKS  minimum information about a 
marker gene sequence

MIMS  minimum information about a 
metagenome sequence

MIxS  minimum information about (X) 
any sequence

ML machine learning

ModEx model-experiment framework

MONet Molecular Observation Network

MRV  monitoring, reporting, and 
verification

MTE model tree ensemble

NEON  National Ecological Observatory 
Network

NGEE  Next-Generation Ecosystem 
Experiments

NMDC  National Microbiome Data 
Collaborative

NN  neural network

NSF National Science Foundation

PFLOTRAN  Massively Parallel Reactive 
Flow and Transport Model for 
Describing Subsurface Processes

QA quality assurance

QC quality control

SciDAC  DOE Scientific Discovery through 
Advanced Computing program

SOC soil organic carbon

SPRUCE  Spruce and Peatland Reponses 
Under Changing Environments

Tg teragram

TPU tensor processing unit

TROPOMI  TROPOspheric Monitoring 
Instrument

UAV unmanned aerial vehicle

UQ uncertainty quantification




