Satellite and Ground Measurements of the Global Carbon Cycle Differ

Quantifying discrepancies between ground measurements of soil respiration and satellite estimates of photosynthesis.

Estimates of photosynthesis and respiration can differ widely, raising issues about the accuracy of current carbon cycle modeling in global forests and other ecosystems.

[Courtesy Jake Härter | Flickr ]

The Science

How large are the carbon flows in the global carbon cycle? Satellites provide estimates of plant photosynthesis while researchers use ground measurements to understand respiration—the process by which living organisms send carbon dioxide, or CO2, back into the atmosphere. These two quantities should be linked because photosynthesis is the ultimate source of all respired carbon. A new study calculated photosynthesis rates from respiration data and vice versa. The results show that estimates of these two processes differ widely, raising questions about current scientific understanding of the global carbon cycle.

The Impact

Large discrepancies between published estimates of global photosynthesis and respiration reflect uncertainties that hamper the scientific community’s capacity to understand and model how the global carbon cycle will evolve in response to climate change. This study documents that more recent estimation methods seem to be closing the gap between estimates of these two dominant land-based, or terrestrial, carbon fluxes. This finding is crucial as accurate estimates of the largest terrestrial carbon fluxes are necessary for correctly determining the land carbon sink, or how strongly human emissions are being taken up by ecosystems worldwide.

Summary

The terrestrial carbon sink—the balance between photosynthesis and respiration—removes about a quarter of anthropogenic CO2 emissions. The magnitude of global photosynthesis (GPP) is therefore one of the largest sources of uncertainty in predicting future trajectories of global temperature. Global GPP is roughly balanced by ecosystem-to-atmosphere respiratory fluxes and dominated by soil respiration (RS). Although GPP and RS are physiologically linked—since the former is the ultimate source of all respired carbon—no attempts have been made to quantify how consistent GPP and RS estimates are at the global scale. This study compares these two large carbon fluxes by using published estimates of one flux (either GPP or RS) to compute the likeliest values of the other. Researchers found inconsistencies in the estimates that raise doubts about how robustly Earth system models can project changes in global carbon cycling. These results emphasize the importance of cross-comparing datasets and models to understand terrestrial carbon cycling as well as future climate change.

Principal Investigator

Vanessa Bailey
Pacific Northwest National Laboratory
[email protected]

Program Manager

Daniel Stover
U.S. Department of Energy, Biological and Environmental Research (SC-33)
Environmental System Science
[email protected]

Funding

This research was supported by the Biological and Environmental Research (BER) Program’s Environmental System Science (ESS) program, within the Department of Energy’s (DOE) Office of Science. The Pacific Northwest National Laboratory (PNNL) is operated for DOE by Battelle Memorial Institute.

References

Jinshi, J., et al. "Historically Inconsistent Productivity and Respiration Fluxes in the Global Terrestrial Carbon Cycle." Nature Communications 13 1733  (2022). https://doi.org/10.1038/s41467-022-29391-5.