January 26, 2021

Print Friendly, PDF & Email

The Importance of Nutrients for Microbial Priming in a Bog Rhizosphere

Researchers identify the types of molecules created or lost during plant-stimulated microbial priming that facilitated wetland methane generation.

Root and soil interface of an experimental wetland sedge (Carex aquatilis) growing in bog soil. The red, white, and blue sticks mark sampling locations.

[Courtesy Nick Waldo.]

The Science

Wetlands host microbes that convert organic carbon into methane, a powerful greenhouse gas. Wetland plants can influence which carbon compounds are available to microbes by releasing organic carbon from their roots into surrounding soil. This carbon can trigger microbial priming: the process of new carbon stimulating the microbial community into processing more soil carbon than they otherwise would have. Researchers from the University of Washington and Pacific Northwest National Laboratory identified what types of molecules were created or lost during plant-stimulated microbial priming that fueled methane generation. They found that the size and nutrient content of the molecules controlled which compounds were processed by the microbial community.

The Impact

Results clarify the factors that control microbial priming and associated methane production within wetland soils. Understanding the causes and mechanisms of plant-stimulated microbial priming will help scientists better predict the fate of wetland soil carbon and methane production. This information will be particularly important amid impacts of climate change. Warmer temperatures and elevated concentrations of atmospheric CO2 are expected to increase plant productivity and cause plants to release more carbon from their roots into surrounding soil.

Summary

This study used high-resolution Fourier transform ion cyclotron mass spectrometry (FT-ICR-MS) analysis to probe the composition of soil organic compounds from the rhizosphere of Carex aquatillis, a common wetland sedge, which stimulated microbial priming and methane generation within peat soil collected from a bog. The goal was to identify what types of molecules were created or lost during microbial priming in the wetland rhizosphere and thus advance mechanistic understanding of the process. FT-ICR-MS analysis demonstrated that more microbial transformations of carbon occurred among water-soluble compounds than among hydrophobic compounds, but that some hydrophobic compounds were processed. Crucially for understanding microbial priming, plant-released carbon triggered increased processing of high molecular weight molecules regardless of nutrient content, but processing of low molecular weight compounds only occurred if they contained nitrogen or sulfur (nutrients essential for plant growth).  The importance of sulfur in determining molecular utilization is noteworthy because priming literature typically focuses on nitrogen. The fact that some molecules were processed and others were not is evidence for a selective priming effect in which some carbon compounds with specific properties are used at an increased rate, while others are left unaltered.

Principal Investigator

Rebecca Neumann
University of Washington
rbneum@uw.edu

Program Manager

Daniel Stover
U.S. Department of Energy, Biological and Environmental Research (SC-33)
Environmental System Science
daniel.stover@science.doe.gov

Funding

This material is based upon work supported by the U.S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research under Award Number DE-SC-0010338. A portion of this research was performed under the Facilities Integrating Collaborations for User Science (FICUS) program and used resources at the Environmental Molecular Sciences Laboratory (grid.436923.9), which is a DOE Office of Science User Facility sponsored by the Office of Biological and Environmental Research and operated under Contract No. DE-AC05-76RL01830. This material is based upon work supported by the DOE’s Office of Science, Office of Workforce Development for Teachers and Scientists, Office of Science Graduate Student Research (SCGSR) program. The SCGSR program is administered by the Oak Ridge Institute for Science and Education (ORISE) for DOE. ORISE is managed by ORAU under contract number DE-SC0014664. Students were additionally supported by the following fellowships and grants: UW College of Engineering Dean’s Fellowship/Ford Motor Company Fellowship, UW CEE Valle Scholarship, UW Mary Gates Scholarship, and the Carleton College Kolenkow Reitz Fellowship.

 

References

Waldo, N.B., et al. "The Importance of Nutrients for Microbial Priming in a Bog Rhizosphere." Biogeochemistry 152 271–290  (2021). https://doi.org/10.1007/s10533-021-00754-2.