Using Remote Sensing to Determine the Relationship Between Soil Conditions and Plant Communities

Combining above- and belowground measurements of a mountainous meadow plant community and soil characteristics to infer patterns of ecosystem heterogeneity.

The Science

Integration of high-resolution remote sensing and geophysical data for the investigation of the co-variability between plant community distributions, soil electrical conductivity, and microtopographical properties was used to assess the spatial organization of meadow plants within a floodplain-hillslope system at the East River watershed in Colorado.

The Impact

This study fused satellite and Light Detection and Ranging (LiDAR) data, along with site characterization data to arrive at estimates of key meadow communities at high resolution. This type of information could be used on large scales to provide information on the spatial variability of soil properties, and it could also be used to capture plant community responses to perturbations over significant landscape areas.

Summary

In this study, the authors aimed to understand how soil and topographic properties influence the spatial distribution of plant communities within a floodplain-hillslope system, located in the mountainous East River watershed in Colorado. Watersheds are vulnerable to environmental change, including earlier snowmelt, changes in precipitation, and temperature trends, all of which can alter plant communities and associated water and nutrient cycles within the watershed. However, tractable yet accurate quantification of plant communities is challenging to do at a scale that also permits investigations of the key controls on their distribution. In this work, the team developed a framework that uses a new approach to estimate plant distributions, one which exploits both remote sensing (satellite) images and surface geophysical data. Joint consideration of the above- and belowground datasets allowed the team to characterize both plant and soil properties at high spatial resolution and to identify the main environmental controls for plant distribution. The results show that soil moisture and microtopography strongly influence how plant communities are spatially distributed. Considering that each community responds to external perturbation in a different way, this method can be used within a multitemporal framework to characterize environmental heterogeneity and to capture plant responses caused by climate-related perturbations.

Principal Investigator

Nicola Falco
Lawrence Berkeley National Laboratory
nicolafalco@lbl.gov

Program Manager

Paul Bayer
U.S. Department of Energy, Biological and Environmental Research (SC-33)
Environmental System Science
paul.bayer@science.doe.gov

Funding

This work was supported by the Office of Biological and Environmental Research within the U.S. Department of Energy Office of Science.

References

N. Falco, H. M. Wainwright, B. Dafflon, E. Léger, J. Peterson, H. Steltzer, C. Wilmer, J. C. Rowland, K. H. Williams, and S. S. Hubbard. "Investigating Microtopographic and Soil Controls on a Mountainous Meadow Plant Community Using High-Resolution Remote Sensing and Surface Geophysical Data". Journal of Geophysical Research: Biogeosciences 124 (6), 1618–36  (2019). http://doi.org/10.1029/2018JG004394.