Next-Generation Ecosystem Experiments – Arctic

Advancing the predictive power of Earth system models through understanding of the structure and function of Arctic terrestrial ecosystems

Project website | Overview brochure PDFNGEE-Arctic logo | Podcast | Feature article

Principal investigator: Colleen M. Iversen

An important challenge for Earth system models (ESMs) is to accurately represent land surface and subsurface processes and their complex interactions. This is true for all regions of the world, but is especially important for high-latitude Arctic ecosystems that are characterized by ice-rich landscapes where topography, hydrology, vegetation, and biogeochemistry are inextricably linked. To address this challenge, the Environmental System Science (ESS) program within the Department of Energy’s (DOE) Biological and Environmental Research (BER) program is supporting a Next-Generation Ecosystem Experiments project in the Arctic (NGEE Arctic).

NGEE-Arctic research areas on tundra ecosystem map

Landscapes in Transition. A mechanistic understanding of what controls the coupled nature of hydrology, biogeochemistry, and vegetation dynamics is needed for system-wide understanding and prediction of a range of tundra ecosystems underlain by continuous and discontinuous permafrost. NGEE Arctic research activities are designed to identify and quantify the mechanisms underlying processes.

The NGEE approach seeks to improve the representation of critical environmental processes in ESMs by focusing on systems that are globally important, environmentally sensitive, and understudied or inadequately represented in models. In this approach, modeling and process research are closely and iteratively connected so that model structure and computational requirements are considered in the development of process studies whose outcomes, in turn, are designed to directly inform, challenge, and improve the predictive power of numerical models.

Ultimately, the NGEE Arctic project is developing a process-rich model, extending from the bedrock to the interface between the vegetative canopy and the atmosphere, in which the evolution of Arctic ecosystems can be modeled at the scale of a high-resolution ESM grid cell (~1 km).

Key Science Questions

The NGEE Arctic project seeks to understand how surface and subsurface processes and properties are interconnected across permafrost-dominated tundra ecosystems. Related research experiments and modeling efforts on Alaska’s North Slope and Seward Peninsula are designed to answer the following questions:

  • How does the structure and organization of the landscape control the storage and flux of carbon and nutrients in a changing environment?
  • What will control rates of carbon dioxide and methane fluxes across a range of environmental conditions?
  • How do plant functional traits change across environmental gradients, and what are the consequences for carbon, water, and nutrient fluxes?
  • What determines shrub distribution across the tundra landscape, and how will shrub distribution and atmospheric feedbacks change in the future?
  • Where, when, and why will the Arctic become wetter or drier, and what are the pan-Arctic implications?
  • What controls the vulnerability of Arctic ecosystems to disturbance, and how do disturbances alter the structure and function of these ecosystems?
Permafrost Landscapes photo

Permafrost Landscapes. Degradation of ice-rich permafrost causes subsidence and increased variability in topography across the Arctic landscape. Associated changes in hydrology, vegetation, and biogeochemistry create “hot spots” (i.e., locations within an ecosystem that exert a disproportionately large influence on the flow and processing of nutrients) for carbon dioxide and methane fluxes.

Integration Across Scales

Variation in landscape structure and organization—including ridges, valleys, and watershed basins—provide the organizing framework for integrating process studies. Multiscale research activities organized around these components are designed to help determine whether the Arctic is, or in the future will become, a negative or positive feedback to anthropogenically forced environmental change. These activities include landscape heterogeneity, soil biogeochemistry, plant traits, shrub dynamics, watershed hydrology, and disturbance.

Landscape heterogeneity considers how vegetation, biogeochemistry, and hydrology are influenced by regional landforms such as ridges, valleys, and drainage basins. Variation in landscape form and function are simplified for input into models while still retaining fine-scale features with the strongest influence on climate feedbacks.

Soil biogeochemistry focuses on the influence of temperature, moisture, and nutrients on microbial dynamics and soil organic matter decomposition. Understanding controls over carbon dioxide and methane fluxes across a range of environmental conditions has been critical for improving predictions of net carbon exchange in Arctic systems.

Plant traits provide an important link among plant communities, tundra biogeochemistry, and biophysical feedbacks to the atmosphere. Improved understanding of tundra plant traits, above- and belowground, have led to new approaches for scaling plant function from leaf to landscape using remotely sensed data and models.

Shrub dynamics focuses on advancing capabilities to determine shrub distributions and predict their impacts on the environment, now and in the future. The development of dynamic tundra vegetation models, including new shrub and moss functional types, has facilitated process-rich simulations over the 21st century and the identification of structural and parameter priorities for dynamic predictions.

Watershed hydrology determines the spatial distribution and temporal dynamics of soil saturation and inundation and, in turn, surface and subsurface hydrological and biogeochemical cycling and local- to regional-scale energy balance. Observations have informed key model improvements in prediction of past, present, and future distributions of snow, soil moisture and inundation, and surface and subsurface water flow across the Arctic landscape.

Disturbances such as wildfire, thermokarst, and thermal erosion are expected to increase in frequency and magnitude over the coming decades due to a warmer environment and the intensification of human activities in the Arctic and have the potential to cause profound changes by disrupting processes that regulate climate feedbacks. Observations and model simulations have targeted knowledge gaps and interactions among multiple forms of disturbance.

Connecting Observations to Models

Researcher walks through Alaska's Seward Peninsula

Climate Feedbacks. The distribution and dynamics of vegetation across Alaska’s Seward Peninsula reflect the interplay of permafrost, hydrology, and topography, which in turn has a critical influence on the carbon and energy budget of tundra landscapes.

This comprehensive suite of NGEE Arctic process studies and observations is being strongly linked to model development and application requirements for improving process representation, initializing multiscale model domains, calibrating models, and evaluating model predictions. A fundamental challenge for the NGEE Arctic modeling activity is to relate new process knowledge gained at fine and intermediate spatial scales to states and fluxes relevant for integration in ESMs. Consequently, a nested hierarchy of models is being engaged at fine, intermediate, and global scales, connecting process studies to models and models to each other in a quantitative upscaling and downscaling framework.

Leveraging Investments

Led by Oak Ridge National Laboratory, the NGEE Arctic project’s collaborative effort includes scientists at Brookhaven National Laboratory, Lawrence Berkeley National Laboratory, Los Alamos National Laboratory, University of Alaska Fairbanks, and partners at universities and other state and federal agencies. Furthermore, the NGEE Arctic project is grateful to several Native Corporations for their guidance and for allowing the team to conduct research on the traditional homelands of the Iñupiat: UIC Science, Bering Straits Native Corporation, Council Native Corporation, Mary’s Igloo Native Corporation, and the Sitnasuak Native Corporation.

Helicopter on snow in Alaska's Seward Peninsula

Climate Feedbacks. Changes in vegetation, especially an increased abundance of tall shrubs, also is a strong determinant of snow depth distribution (inset), which impacts soil temperatures and discharge of water to streams and rivers.

 

In addition to ESS, other BER programs involved in the NGEE Arctic project include:

  • Atmospheric Radiation Measurement (ARM) user facility
  • Atmospheric System Research program
  • Earth and Environmental Systems Modeling, including the Energy Exascale Earth System Model (E3SM) project and International Land Model Benchmarking project (ILAMB)
  • Environmental Molecular Sciences Laboratory
  • Genomic Science program

NGEE Arctic also is affiliated with other federal and international monitoring projects, including NASA’s Arctic-Boreal Vulnerability Experiment (ABoVE).

BER provides research funding to leverage the NGEE investment through regular Funding Opportunity Announcements posted at grants.gov.

A Culture of Collaboration

The NGEE Arctic project is committed to the development of a culture of safety, inclusion, and trust as the foundation for cross-disciplinary science (Iversen et al. 2020). Summarized, the project’s values promote safe and harassment-free work environments, respect for local culture and knowledge of the environment in areas and communities where researchers are guests, and collaboration and open science. All NGEE Arctic data generated from observations, experiments, and models are available at ngee-arctic.ornl.gov.

Workshop Reports

2024 Abstracts

PIPresenterTitleInstitutionProgram Area
Saleskavan HarenEddy Covariance of Methane in Upland and Seasonally Flooded Forests in the Amazon Basin, Working Towards the Contribution of Tree Stems on Ecosystem Methane FluxesUniversity of ArizonaUniversity
ParasharBerghouseFeedback Loops and Abiotic Determinants of Biomass Growth and its Impact on Chromium Reduction in the Hyporheic ZoneDesert Research Institute, Reno, NVUniversity
ZavarinWassermanLong-Term Transport of Radionuclides in Watersheds: Case Studies from Three Test BedsLawrence Berkeley National LaboratorySFA: LLNL (Zavarin) Biogeochemistry at Interfaces
CavaleriCavaleriMeasured and Modeled Responses of Tropical Plant Carbon Balance at the TRACE Site to Long-Term Experimental Warming and Hurricane Disturbance RecoveryMichigan Technological UniversityUniversity
ZavarinZavarinThe Lawrence Livermore National Laboratory BioGeoChemistry at Interfaces Science Focus Area: A 15 Year Effort to Identify Biogeochemical Processes Controlling the Fate of Radionuclides in the EnvironmentLawrence Berkeley National LaboratorySFA: LLNL (Zavarin) Biogeochemistry at Interfaces
PierceBrooksWatershed Dynamics and Evolution Science Focus Area Theme 2: Stream Corridor ProcessesOak Ridge National LaboratorySFA: ORNL (Pierce) WADE
SullivanDumontPlant-Mediated Hydraulic Redistribution: A Valve Controlling Watershed Solute Transport?Colorado School of MinesUniversity
TornCrutchfield-PetersThe Role of Redox and Wildfire in Shaping the Fate of Soil Carbon and Biogeochemical CyclingLawrence Berkeley National LaboratorySFA: LBNL (Torn) Belowground Biogeochemistry
TornKaraozMicrobial Functional Traits Through the Whole Soil Profile and Their Response to WarmingLawrence Berkeley National LaboratorySFA: LBNL (Torn) Belowground Biogeochemistry
TornRileyMicrobe-Explicit Modeling Reveals Complex Interactions in a Forest Soil Heating ExperimentLawrence Berkeley National LaboratorySFA: LBNL (Torn) Belowground Biogeochemistry
TornTornThe Lawrence Berkeley National Laboratory Belowground Biogeochemistry Science Focus Area: Overview and Soil Carbon and Nitrogen CyclingLawrence Berkeley National LaboratorySFA: LBNL (Torn) Belowground Biogeochemistry
ScheibeStegenRiver Corridor Science Focus Area: The Next EvolutionPacific Northwest National LaboratorySFA: PNNL (Scheibe) River Corridor and Watersheds
ScheibeChenMulti-Basin Modeling, Regional Transferability, and Hypothesis-Based Model-Experiment (ModEx)Pacific Northwest National LaboratorySFA: PNNL (Scheibe) River Corridor and Watersheds
ScheibeDanczakReconciling Variation and Interconnections in Stream Network Organic Matter Degradation and Microbial Community Activity Across ScalesPacific Northwest National LaboratorySFA: PNNL (Scheibe) River Corridor and Watersheds
ScheibeZhengBeyond Data Assimilation: A Hypothesis-Driven Model-Experiment (ModEx) Approach to Predictive Modeling of Sediment Respiration Across the Continental U.S.Pacific Northwest National LaboratorySFA: PNNL (Scheibe) River Corridor and Watersheds
ScheibeGarayburu-CarusoHypothesis-Based Model-Experiment (ModEx) Reveals Effects of Drivers and Disturbances on Basin-Scale Ecosystem RespirationPacific Northwest National LaboratorySFA: PNNL (Scheibe) River Corridor and Watersheds
ScheibeJiangIntegrating Organic Matter Measurements into Watershed Hydro-Biogeochemical ModelsPacific Northwest National LaboratorySFA: PNNL (Scheibe) River Corridor and Watersheds
ScheibeMyers-PiggWildfire Influences on Stream Network Hydro-Biogeochemistry Are Related to Watershed Properties, Burn Severity, and Organic Matter ChemistryPacific Northwest National LaboratorySFA: PNNL (Scheibe) River Corridor and Watersheds
ScheibeChenWatershed Ecohydrological Responses to Disturbances Under Changing ClimatePacific Northwest National LaboratorySFA: PNNL (Scheibe) River Corridor and Watersheds
KemnerBoyanovUranium Speciation in the Rhizosphere and Sediment Compartments in a Riparian WetlandArgonne National LaboratorySFA: ANL (Kemner) Wetland Hydro-biogeochemistry
WalkerSharmaSimulating CO2 Responses of Secondary-Succession Forests at Duke and Oak Ridge FACE Experiments with ELM-FATES-CNPOak Ridge National LaboratoryFACE-MDS
PierceGomez-VelezWatershed Dynamics and Evolution (WaDE) Science Focus Area Modeling Crosscut: Modeling the Effects of Hyporheic Zone Processes on Stream Oxygen DynamicsOak Ridge National LaboratorySFA: ORNL (Pierce) WADE
PierceJohsWatershed Dynamics and Evolution Science Focus Area Theme 1: Dynamic HeadwatersOak Ridge National LaboratorySFA: ORNL (Pierce) WADE
PierceKurzWatershed Dynamics and Evolution Science Focus Area Theme 3: Organizational Controls on Stream Function Within and Across Mid-Order Watersheds with Heterogeneous Land CoverOak Ridge National LaboratorySFA: ORNL (Pierce) WADE
PiercePierceWatershed Dynamics and Evolution Science Focus Area: OverviewOak Ridge National LaboratorySFA: ORNL (Pierce) WADE
CarboneSimonpietriEcohydrological Controls on Root and Microbial Respiration in the East River Watershed of ColoradoNorthern Arizona UniversityUniversity
SmithSiggersAssessing Rangeland Function Under Altered Precipitation Regimes: Can a Deluge Rescue Forage Production Following Catastrophic Loss of the Dominant Species?Colorado State UniversityUniversity
ChanTotheroMicrobial Metabolisms Connecting Iron and Carbon in Terrestrial Wetlands: A Metagenomic and Metatranscriptomic Study of the Savannah River SiteUniversity of DelawareUniversity
VillaTajAssessing Greenhouse Gas Structural and Functional Resilience of Freshwater Coastal Wetlands Subject to Persistent Saltwater Intrusion EventsUniversity of Louisiana–LafayetteEarly Career
KemnerKemnerMolecular to Micron-Scale Investigations of Floc and Colloidal Fractions of Wetland Groundwater and Surface WatersArgonne National LaboratorySFA: ANL (Kemner) Wetland Hydro-biogeochemistry
El MasriRossBald Cypress Knees Contribute to Methane Emissions in a Bottomland Hardwood WetlandMurray State UniversityUniversity
CardenasMukherjeeGroundwater-Dependent Fluxes of Water and Organic Carbon in a Permafrost Watershed Across Hydrologic StatesUniversity of Texas–AustinUniversity
JastrowMatamalaSoils of the Arctic Foothills of Alaska: Composition and Degradation StateArgonne National LaboratorySFA: ANL (Jastrow) Soil Carbon Response to Environmental Change
KivlinVoughtThe Effect of Accelerated Snowmelt on Carbon Cycling Across a Growing SeasonUniversity of MichiganUniversity
BrodieKingScaling of Watershed Functional Trait Co-variabilityLawrence Berkeley National LaboratorySFA: LBNL (Brodie) Watershed Function
JastrowJastrowGround Ice Variations Among Soil Horizons and Ice-Wedge Polygon Types in Arctic Coastal Lowland SoilsOak Ridge National LaboratorySFA: ANL (Jastrow) Soil Carbon Response to Environmental Change
HansonWoodEcosystems Under Stress: Knowledge Gaps and Approaches Using MOFLUX as a TestbedOak Ridge National LaboratorySFA: ORNL (Hanson) Terrestrial Ecosystem Science
Kinsman-CostelloHassettChanges in Inundation Drive Carbon Dioxide and Methane Fluxes in a Temperate WetlandKent State UniversityUniversity
HansonGuTracking Down the “Missing Energy” at Eddy Covariance Sites: Have Researchers Been Miscalculating Sensible Heat?Oak Ridge National LaboratorySFA: ORNL (Hanson) Terrestrial Ecosystem Science
HansonCraigA Framework for Evaluating Process Uncertainty Among Soil Carbon ModelsOak Ridge National LaboratorySFA: ORNL (Hanson) Terrestrial Ecosystem Science
WhitmanWhitmanEffects of Fire and Fire-Induced Changes in Soil Properties on Post-Burn Soil RespirationUniversity of Wisconsin–MadisonUniversity
WebsterWebsterThe QuEST Project: Integrating Catchment Expansion-Contraction Dynamics into Cross-Continental Hydro-Biogeochemical PredictionsUniversity of New MexicoEPSCoR
HansonSchadtMicrobial Community Dynamics During 3 Years of in situ Peat Decomposition at the SPRUCE Experiment in Northern MinnesotaOak Ridge National LaboratorySFA: ORNL (Hanson) Terrestrial Ecosystem Science
MarlowMarlowMapping Hot Spots of Metabolic Potential in Salt Marsh Sediments with Multiplexed Fluorescence In Situ HybridizationBoston UniversityUniversity
LundquistLundquistSeasonal Cycles Unravel Mysteries of Missing Mountain WaterUniversity of WashingtonUniversity
HiranumaBithiAdvancement of High-Resolution Microfluidic Device in Atmospheric Ice Nucleation Research and Integration into Science TeachingWest Texas A&M UniversityRDPP
FraterrigoFraterrigoRemote Sensing of Plant Functional Traits for Modeling Arctic Tundra Carbon DynamicsUniversity of Illinois–Urbana-ChampaignUniversity
FaroughiPawarContext-Aware Deep Learning Framework for Earth System Model Data Compression and DownscalingTexas State University–San MarcosUniversity
ArkinHenryImprovements to Knowledgebase Platform Toward Causal Predictive EcologyLawrence Berkeley National LaboratoryNone
BargarBargarOpportunities for Rhizosphere Function, Biogeochemistry and Terrestrial-Atmospheric User Research at the Environmental Molecular Sciences LaboratoryEnvironmental Molecular Sciences Laboratory
BargarBargarMolecular and Microstructural Soil Characterization User Program and Soil Data Across the Continental United States: Environmental Molecular Sciences Laboratory’s Molecular Observation NetworkEnvironmental Molecular Sciences LaboratoryNone
ZhangZhangGroundwater Supported Vegetation Refugia as a Mechanism of Forest Recovery in a Rocky Mountain Watershed Impacted by DisturbancesUniversity of Wyoming
YagerYagerImpacts of Streambed Dynamics on Nutrient and Fine Sediment Transport in Mountain RiversUniversity of Idaho
XuXuMonitor And Constrain Tropical Ecosystem Sensitivity to Moisture: Progress in Characterizing Ecohydrology of a Tropical Moist Forest Under Experimental Throughfall ExclusionCornell University
VeachVeachExamining Microbial Respiration and Chemical Signatures of Urban Rivers Differing in Flow HistoryUniversity of Texas–San AntonioRDPP
TorresRamosConstraining the Timing and Tempo of Clay Mineral Formation and Organic Matter Stabilization in an Alpine Watershed: East River, Colorado, United StatesRice University
ThurberLaphamApplying R-Osmos To Quantify Hot Moments in a High Mountain Watershed: Codevelopment of Novel Methodology to Advance Terrestrial-Aquatic Interface ModelsOregon State University
TaillefertTaillefertEffect of Hydrological Forcing on the Biogeochemical Transformation of Carbon and Greenhouse Gas Emissions in Riparian and Streambed SedimentsGeorgia Institute of Technology
SongMcCulloughKnowledge-Guided Clustering of Multidomain Data to Improve Predictions of Aerobic Respiration in River CorridorsUniversity of Nebraska–Lincoln
SmithSmithDroughts and Deluges in Semiarid Grassland Ecosystems: Implications of Co-Occurring Extremes for Carbon CyclingColorado State University
DukesDukesA Research Agenda for Improving the Representation of Plant Hydrodynamics in Earth System ModelsCarnegie Institution for ScienceUniversity
DevineniDevineniPinpointing the Unlikeliness of Ida’s New York City Hourly Intensity: Climate Change, Non-Stationarity, and Extreme PrecipitationThe City University of New YorkRDPP
HuiHuiEffects of Global Warming and Elevated Carbon Dioxide on Peatland Ecosystem Productivity and Greenhouse Gas Emissions: A Modeling StudyTennessee State UniversityRDPP
HansonWeberGreater Shrub Root Production Under Warming and Elevated Carbon Dioxide Is Not Distributed More DeeplyOak Ridge National LaboratorySFA: ORNL (Hanson) Terrestrial Ecosystem Science
HansonHansonPlant Community Changes in Annual Production and Composition Through 8 Years of Warming Manipulations Under Ambient and Elevated Carbon Dioxide AtmospheresOak Ridge National LaboratorySFA: ORNL (Hanson) Terrestrial Ecosystem Science
HansonSalmonNitrogen and Phosphorus Pools and Turnover in Peat Following 5 Years of Simulated Climate ChangeOak Ridge National LaboratorySFA: ORNL (Hanson) Terrestrial Ecosystem Science
HansonGriffithsEffect of Warming on Solute Concentrations and Fluxes from Peatland StreamsOak Ridge National LaboratorySFA: ORNL (Hanson) Terrestrial Ecosystem Science
BaileyBandopadhyaySoil Bacterial Community Structure and Core Membership Along a Terrestrial-Aquatic Interface of a Freshwater and Estuarine Coastal SystemPacific Northwest National LaboratoryCOMPASS
TornChuAmeriFlux BASE Data Pipeline to Support Network Growth and Data SharingLawrence Berkeley National LaboratoryAmeriflux
TornTornAmeriFlux Management Project: Overview and the Year of Remote SensingLawrence Berkeley National LaboratoryAmeriflux
MoultonChenDeveloping Integrated Hydro-biogeochemical Modeling from Batch to Watershed ScalesLos Alamos National LaboratoryIDEAS
MoultonPainterAdvancing Stream Metabolism Modeling Through the IDEAS-Watersheds and Watershed Dynamics and Evolution Science Focus Area PartnershipLos Alamos National LaboratoryIDEAS
MoultonXuIDEAS-Watersheds Activities in Partnership with the Watershed Function Science Focus AreaLos Alamos National LaboratoryIDEAS
MoultonMoultonIDEAS-Watersheds (Phase 2): Accelerating Watershed Science Through a Community-Driven Software EcosystemLos Alamos National LaboratoryIDEAS
MayesWarrenInfluence of Soil Moisture and Tree Evapotranspiration on an Urban MicroclimateOak Ridge National LaboratoryOther
SlessarevHunterUnderstanding the Geochemical Basis for Soil Organic Matter Storage at the Global ScaleYale University
SihiSihiModeling Temperature Sensitivity of Soil Respiration from Two Field-Warming Experiments in TropicsEmory University
SihiSihiSimulating Greenhouse Gas Fluxes from a Terrestrial-Aquatic Interface using Microsite Probability Density Functions and Redox-Reaction NetworksEmory University
SantschiKaplanMolecular Features of Uranium-Binding Natural Organic Matter in a Riparian Wetland Using Ultrahigh Resolution Mass SpectrometryTexas A&M University
SantelliChenReactive Transport Modeling of Iron-Sulfur-Carbon Cycling: Investigating The Impacts Of Dynamic Hydrologic Conditions at a Riparian WetlandUniversity of Minnesota–Minneapolis/Twin Cities
SalaSalaImpaired Water Relations in Carbon-Limited Ponderosa Pines: Implications for Belowground InteractionsUniversity of Montana
RayRayEvolution of Moist Static Energy During Madden-Julian Oscillation Using Tropical Western Pacific Atmospheric Radiation Measurement ObservationsFlorida Institute of TechnologyRDPP
PockmanPockmanEmpirical Measurements and Model Representation of Hydraulic Redistribution as a Control on Function of Semiarid Woody EcosystemsUniversity of New Mexico
O’HalloranO’HalloranImproving Models of Stand and Watershed Carbon and Water Fluxes with More Accurate Representations of Soil-Plant-Water Dynamics in Southern Pine EcosystemsBaruch Institute of Coastal Ecology and Forest Science
OikawaOikawaConstraining Carbon Dioxide and Methane Fluxes from Diverse Tidal Wetlands: Standardizing Measurements and Analysis Across a Network of Eddy Covariance Sites in North America and CanadaCalifornia State University–East Bay
KraucunasMoultonIntegrated Coastal Modeling: ESS Modeling of Natural Watersheds and Engineered Systems in the Coastal ZonePacific Northwest National LaboratoryOther
ChambersSouzaForest Dynamics After a Windthrow in the Central AmazonLawrence Berkeley National LaboratoryNGEE-Tropics
ChambersThorntonSimulating Secondary Forest Growth and Composition Dependency on Prior Land Use, Time of Abandonment, and Seed AvailabilityLawrence Berkeley National LaboratoryNGEE-Tropics
ChambersRobbinsFuture Climate Doubles the Risk of Hydraulic Failure in a Wet Tropical ForestLawrence Berkeley National LaboratoryNGEE-Tropics
ChambersFangTowards Amazon Basin-Scale Vegetation-Hydrology Modeling Using ELM-ParFlow-FATESLawrence Berkeley National LaboratoryNGEE-Tropics
ChambersChitra-TarakAdvancing Model Predictions of Tropical Forest Response to DroughtsLawrence Berkeley National LaboratoryNGEE-Tropics
OhOhIntegrating Process-Based and Machine Learning Approaches for Estimating the Global Methane Soil SinkNational Oceanic and Atmospheric Administration
ChambersNegron-JuarezCMIP6 HighResMIP Bias in Extreme Rainfall Drives Underestimation of Amazonian PrecipitationLawrence Berkeley National LaboratoryNGEE-Tropics
ChambersMcDowellThe Past and Future of NGEE Tropics Measurements and ModExLawrence Berkeley National LaboratoryNGEE-Tropics
ChambersRahmanRegulation of Whole-Tree Crown Conductance in Tropical Forests Across a Steep Climatic GradientLawrence Berkeley National LaboratoryNGEE-Tropics
ChambersLongoRegional-Scale, Observation-Informed Tropical Forest Diversity in ELM-FATESLawrence Berkeley National LaboratoryNGEE-Tropics
NoyceAl-HajEnvironmental Drivers of Coastal Wetland Biogeochemical CyclingSmithsonian Environmental Research Center
ChambersLiExploring the Relative Role of Vapor Pressure Deficit and Soil Moisture on Vegetation Productivity Using Data-Driven Machine LearningLawrence Berkeley National LaboratoryNGEE-Tropics
NorouziNorouziAdvancements in Urban Heat Island Dynamics: Integrating Remote Sensing and Ground-Based MeasurementsCity University of New York–BrooklynRDPP
MegonigalNoyceModeling Coastal Wetland Responses to Warming and Elevated Carbon DioxideSmithsonian Environmental Research Center
ChambersSolanderCanopy to Root Zone Soil, Water, and Nutrient Dynamics from Field Observations Across Different Environmental Gradients in the NeotropicsLawrence Berkeley National LaboratoryNGEE-Tropics
ChambersJardineAccelerated Daytime Stem Growth and Respiration of Canopy Trees in the Amazon BasinLawrence Berkeley National LaboratoryNGEE-Tropics
ChambersCushmanSpatial and Temporal Drivers of Tropical Forest Canopy Disturbances from Annual Drone PhotogrammetryLawrence Berkeley National LaboratoryNGEE-Tropics
ChambersMedina-VegaSoil Nutrient Controls on Biomass Productivity Across Lowland Tropical ForestsUniversity of California–BerkeleyNGEE-Tropics
ChambersNeedhamVertical Scaling of Leaf Maintenance Respiration Through the Canopy Influences Individual Tree Carbon Budgets with Consequences for Forest Leaf Area and BiomassLawrence Berkeley National LaboratoryNGEE-Tropics
ChambersWarrenLinking Function and Life History Strategy to Soil Water Access in Panamanian ForestsLawrence Berkeley National LaboratoryNGEE-Tropics
ChambersWeberDiurnal Changes in Canopy Spectral Response to Drought Stress in an Amazon ForestLawrence Berkeley National LaboratoryNGEE-Tropics
ChambersRogersDisentangling the Effect of Humidity and Temperature in the Leaf Conductance Response to Vapor Deficit in Tropical TreesLawrence Berkeley National LaboratoryNGEE-Tropics
ChambersKovenIntegrating Global Land-Use Change Drivers into ELM-FATESLawrence Berkeley National LaboratoryNGEE-Tropics
ChambersChambersNext-Generation Ecosystem Experiments (NGEE) Tropics Phase 2 OverviewLawrence Berkeley National LaboratoryNGEE-Tropics
IversenThorntonA Managed Project Data Space that Supports a Proposed NGEE Arctic Phase 4 Integrated ModEx FrameworkOak Ridge National LaboratoryNGEE-Arctic
IversenYuanE3SM Land Model Simulated Snow Seasonality in NGEE Arctic’s Alaskan Seward Peninsula Study Region Affected by Topography, Plant Functional Types, and Meteorological ForcingsOak Ridge National LaboratoryNGEE-Arctic
IversenThalerUsing Machine Learning to Estimate Near-Surface Permafrost Extent at NGEE Arctic Sites on the Seward Peninsula in AlaskaOak Ridge National LaboratoryNGEE-Arctic
IversenCrumleyImprovements to Modeling and Predicting Snow Distribution Using Machine Learning, Physics-Based Models, and New Observational MethodsOak Ridge National LaboratoryNGEE-Arctic
HansonStellingPeatland Greenhouse Gas Efflux (CO2, CH4) Increases Due to Plant-Microbial Dynamics in Response to Whole Ecosystem WarmingOak Ridge National LaboratorySFA: ORNL (Hanson) Terrestrial Ecosystem Science
IversenGasarchAddressing Issues of Model Scale with New E3SM Land Model Parameterizations and a Novel Ecosystem Mapping and Modeling ApproachOak Ridge National LaboratoryNGEE-Arctic
IversenHolmImproving Disturbance and Plant Functional Type Representation in ELM-FATES for Arctic Science QuestionsOak Ridge National LaboratoryNGEE-Arctic
HansonYangDisentangling the Impacts of Warming and Drying on Peatland EcosystemsOak Ridge National LaboratorySFA: ORNL (Hanson) Terrestrial Ecosystem Science
IversenMekonnenImpacts of Wildfire on Arctic Shrub ExpansionOak Ridge National LaboratoryNGEE-Arctic
IversenMevenkampArctic Ecosystem Modeling: What Role Can Paleo History Play in Reducing Model Uncertainty?Oak Ridge National LaboratoryNGEE-Arctic
HansonRicciutoImproving Simulations of Carbon Cycle Feedbacks Through Integration of ELM with Observations and Experiments in Vulnerable EcosystemsOak Ridge National LaboratorySFA: ORNL (Hanson) Terrestrial Ecosystem Science
IversenMurphyIncorporation of Diverse Arctic Vegetation Types in a Land-Surface Model Improves Representation of Spatial Variability in Carbon Dynamics Across a Tundra LandscapeOak Ridge National LaboratoryNGEE-Arctic
IversenKumarEstimating Fractional Cover of Arctic Tundra Plant Functional Types on the North Slope of Alaska Using Sentinel and Harmonized Plot ObservationsOak Ridge National LaboratoryNGEE-Arctic
IversenFettrowThermokarsting Alters Belowground Biogeochemistry and Greenhouse Gas FluxesOak Ridge National LaboratoryNGEE-Arctic
IversenDengelTussock Tundra Methane Fluxes Are Heterogeneous and Sensitive to Spring Conditions: An NGEE Arctic Study at Council, AKOak Ridge National LaboratoryNGEE-Arctic
BrodieNicoToward the Understanding of Biogeochemical Functions of the Future FloodplainLawrence Berkeley National LaboratorySFA: LBNL (Brodie) Watershed Function
IversenSulmanSimulating Arctic Soil Redox and Biogeochemical Interactions in the E3SM Land ModelOak Ridge National LaboratoryNGEE-Arctic
IversenTaşMetagenomics and Synchrotron Fourier Transform Infrared Resolved Changes in Carbon and Nitrogen Cycling in an Arctic TundraOak Ridge National LaboratoryNGEE-Arctic
IversenZhangEvaluation of Earth System Model Simulation for Subsurface Thermal Dynamics of Arctic Landscapes: Insight from an Intermodal Comparison at a Column ScaleOak Ridge National LaboratoryNGEE-Arctic
BrodieWangModeling the Impact of Engineered Ponding on Floodplain Hydrologic Flow Paths and Solute TransportLawrence Berkeley National LaboratorySFA: LBNL (Brodie) Watershed Function
BrodieStewartColloid Generation, Stability, and Transport in Redox-Dynamic Mountain Watersheds and Impact on Water Quality in Alluvial SedimentsLawrence Berkeley National LaboratorySFA: LBNL (Brodie) Watershed Function
IversenAboltImprovements to Land Surface Modeling in Polygonal TundraOak Ridge National LaboratoryNGEE-Arctic
BrodieDwivediAdvancing Watershed Science Via Multiscale Data and Model-Experiment (ModEx) IntegrationLawrence Berkeley National LaboratorySFA: LBNL (Brodie) Watershed Function
IversenShirleyUnraveling the Impacts of Snowpack Dynamics, Soil Properties, and Near-Surface Hydrology on Soil Temperatures and Biogeochemical Processes in Two Discontinuous Permafrost WatershedsOak Ridge National LaboratoryNGEE-Arctic
IversenThorntonMultiscale Modeling and Model-Data Integration to Improve the E3SM Land ModelOak Ridge National LaboratoryNGEE-Arctic
IversenIversenNGEE Arctic: Integrating Boots-on-the-Ground Observations with the Virtual World of Models to Answer Big Science Questions Across the ArcticOak Ridge National LaboratoryNGEE-Arctic
VaradharajanVaradharajanData-Driven Modeling Strategies for Predicting Stream Flow and Temperature at Watershed to Continental ScalesLawrence Berkeley National LaboratoryEarly Career
StegenStegenDrying and Rewetting of Riverbed Sediments Leads to Biogeochemical Cold Moments and Shifts Dissolved Organic Matter ThermodynamicsPacific Northwest National LaboratoryEarly Career
McFarlaneMcFarlaneTropical Forest Response to a Drier Future: Measurements, Synthesis, and Modeling of Soil Carbon Stocks and AgeLawrence Livermore National LaboratoryEarly Career
LarsenMarmolejo-CossíoSoil Production and Chemical Weathering Rates from Intrusive Bedrock in the East River in ColoradoUniversity of Massachusetts–AmherstEarly Career
BrodieBouskillThe Impact of Disturbances on the Trait-To-Function Relationships Underpinning Watershed Biogeochemical CyclingLawrence Berkeley National LaboratorySFA: LBNL (Brodie) Watershed Function
BrodieThirosMountainous Groundwater Response to Warming and Low-To-No Snow ConditionsLawrence Berkeley National LaboratorySFA: LBNL (Brodie) Watershed Function
MedvigyMedvigyUnraveling the Mechanisms of Below- and Aboveground Liana-Tree Competition in Tropical ForestsUniversity of Notre Dame
MatthesMatthesInvestigating Cross-Scale Dynamics at Terrestrial-Aquatic Interfaces in Temperate ForestsHarvard University
BrodieSprengerExploring the Role of Subsurface Traits on Subalpine Ecosystem Response from Seasonal to Decadal Time ScalesLawrence Berkeley National LaboratorySFA: LBNL (Brodie) Watershed Function
MarinosEllsworthRhizosphere Carbon Fluxes Under Drought and Hydraulic Redistribution ConditionsState University of New York–Buffalo
BrodieVaradharajanSensitivity of Groundwater and Surface Water Connectivity to Historical Press and Pulse Climate Disturbances in a Mountainous WatershedLawrence Berkeley National LaboratorySFA: LBNL (Brodie) Watershed Function
BrodieTangProgress in Ecohydrological Model Development for Trait-Based Watershed ModelingLawrence Berkeley National LaboratorySFA: LBNL (Brodie) Watershed Function
LedfordPresswoodEvaluating the Impact of Hydrologic Variability and Land Use on Stream Ecosystem Health in the Piedmont RegionGeorgia State UniversityRDPP
KueppersKueppersIntegrating Tree Hydraulic Trait, Forest Stand Structure, and Topographic Controls on Ecohydrologic Function in a Rocky Mountain Subalpine WatershedLawrence Berkeley National Laboratory
KivlinShulmanMycorrhizal Phenology Under Altered Snowmelt TimingUniversity of Tennessee
Kinsman-CostelloMorinInvestigating Redox Dynamics in Coastal Wetlands: Integrating Biogeochemical and Electrochemical Approaches at Old Woman CreekKent State University
BrodieStolzeModel-Based Interpretation of Hydrological and Biogeochemical Functional Traits of Hillslopes in a Mountainous WatershedLawrence Berkeley National LaboratorySFA: LBNL (Brodie) Watershed Function
JonesTatariwInvestigating Hydrologic Connectivity as a Driver of Wetland Biogeochemical Response to Flood DisturbancesUniversity of Alabama
JacobsJacobsLinking Field Experiments and Modeling to Understand the Role of Hydraulic Redistribution in Temperate ForestsPurdue University
GoodaleGoodaleAre Trees Dormant During the Dormant Season? Determining the Importance of Plant Nutrient Uptake in Changing Cold Seasons in Cold-Region CatchmentsCornell University
GoodGoodImproving Environmental System Science Approaches to Evapotranspiration Partitioning Through Data FusionOregon State University
HaganGleasmanHow Does Wildfire Severity and Post-Fire Precipitation Influence Fate and Transport of Pyrogenic Organic Carbon and Nitrogen in Terrestrial-Aquatic Interfaces?Clemson University
BrodieNewcomerRelationships Between Watershed Scale Co-Variability of Traits and Watershed C-Q FunctionLawrence Berkeley National LaboratorySFA: LBNL (Brodie) Watershed Function
GardnerGardnerEstimating Groundwater Recharge Across Mountainous CatchmentsUniversity of MontanaEPSCoR
ForbrichForbrichFrom Tides to Seasons: How Cyclic Tidal Drivers and Plant Physiology Interact to Affect Carbon Cycling at the Terrestrial-Estuarine BoundaryMarine Biological Laboratory
Eloe-FadroshMillerThe National Microbiome Data Collaborative: A Community-Driven Data InfrastructureLawrence Berkeley National LaboratoryNMDC
McCormackMedinaEctomycorrhizal Production Phenology Follows Roots but Varies by Host Tree SpeciesMorton Arboretum
VaradharajanDamerowESS-DIVE: Enabling Integration Across Diverse Environmental Systems Science DataLawrence Berkeley National LaboratoryESS-DIVE
BaileyZhengAquaMEND: Reconciling Multiple Impacts of Salinization on Soil Carbon BiogeochemistryPacific Northwest National LaboratoryCOMPASS
HerndonHerndonRedox Response to Hydrologic Variability in an Aggrading Coastal DeltaOak Ridge National LaboratoryEarly Career
BaileyWilsonBiogeochemistry and Function Across the Terrestrial-Aquatic Interface: Transition Zones Present Unique and Non-Conservative BehaviorPacific Northwest National LaboratoryCOMPASS
GrahamGrahamUrban Resilience Across the Terrestrial-Aquatic ContinuumPacific Northwest National LaboratoryEarly Career
FuléCarboneSouthwestern Mountains Climate Resilience CenterNorthern Arizona UniversityOther
BaileyStettenCoastal Terrestrial-Aquatic Interfaces: Iron Biogeochemistry in the Great Lakes and Chesapeake Bay RegionsPacific Northwest National LaboratoryCOMPASS
BaileyRodCoastal Flooding Redistributes Water Dispersible Colloids Impacting Dissolved Oxygen DynamicsPacific Northwest National LaboratoryCOMPASS
BaileyRegierResponses to Flooding in a Coastal Forest: Insights from the TEMPEST Landscape-Scale Manipulation ExperimentPacific Northwest National LaboratoryCOMPASS
BaileyPenningtonA Processing Pipeline for High-Volume, High-Quality Environmental Sensor DataPacific Northwest National LaboratoryCOMPASS
BaileyMyers-PiggBiogeochemical Controls Vary Across the Upland to Wetland Gradient of Two U.S. Coastal Regions: Results from the EXCHANGE ConsortiumPacific Northwest National LaboratoryCOMPASS
BaileyMalhotraA Tale of Two Scales: Soils Across Coastal Terrestrial-Aquatic InterfacesPacific Northwest National LaboratoryCOMPASS
BaileyLiExploring the Impact of Seawater Infiltration on Coastal Biogeochemistry: An Integrated Modeling Study of the Terrestrial Aquatic InterfacesPacific Northwest National LaboratoryCOMPASS
BaileyDoroGeophysical Imaging for Scaling Understanding of Hydro-Biogeochemical State Changes Across Coastal InterfacesPacific Northwest National LaboratoryCOMPASS
BaileyChenIntegrating Models and Data Across Scales to Predict Soil-Water-Plant Interactions at the Terrestrial-Aquatic InterfacePacific Northwest National LaboratoryCOMPASS
El MasriEl MasriMethane Dynamics of Vegetation-Soil Interactions in Bald Cypress and Other Bottomland Hardwood ForestsMurray State University, Murray, KY
ComasComasPredicting Hot Spots and Hot Moments of Biogenic Gas Accumulation and Release in a Subtropical Ecosystem Using Airborne Ground-Penetrating RadarFlorida Atlantic University–Davie,FL
CohenCohenCarbon Dynamics in Response to a Shifting Terrestrial Aquatic Interface in Coastal Plain WetlandscapesUniversity of Florida, Gainesville, FL
CoeCoeSynthesizing Bryophyte Functional Response to Environmental Variation to Improve Terrestrial Carbon Cycle ModelingMiddlebury College, Middlebury, VT
CheekeCheekeEnvironment-Microbiome-Plant Interactions Drive Root Microbiome Assembly Outcomes and Impact Conifer and Shrub Seedling Performance in Post Wildfire SoilsWashington State University–Tri-Cities, Richland, WARDPP
ChanTotheroMicrobial Metabolisms Connecting Iron and Carbon in Terrestrial Wetlands: A Metagenomic and Metatranscriptomic Study of the Savannah River SiteUniversity of Delaware, Newark, DE
CardonCardonTidal Triggers and Hot Spot Switches in Coastal MarshMarine Biological Laboratory, Woods Hole, MA
CardonCardonRhizodeposition and the Fate of Mineral-Associated Soil CarbonMarine Biological Laboratory, Woods Hole, MAUniversity
CardenasCardenasDynamics of Interconnected Surface-Subsurface Flow and Reactive Transport Processes Across the Hillslope-Riparian Zone River Corridor Continuum of Cold, High-Latitude WatershedsUniversity of Texas, Austin, TX
Carbone SimonpietriEcohydrological Controls on Root and Microbial Respiration in the East River Watershed of ColoradoNorthern Arizona University, Flagstaff, AZ
CarboneCarboneResponses of Plant and Microbial Respiration Sources to Changing Cold Season Climate Drivers in the East River WatershedNorthern Arizona University, Flagstaff, AZ
BhattacharyyaBhattacharyyaDeciphering the Role of Anaerobic Microsites for Hot Spot and Hot Moment Dynamics of Metal Redox Chemistry and Methane Emissions Within Riverine FloodplainsUniversity of San Francisco, San Francisco, CA
BhatnagarTatsumiLinking Root and Soil Microbial Stress Metabolism to Watershed Biogeochemistry Under Rapid, Year-Round Environmental ChangeBoston University
BertagnolliBertagnolliAnaerobic Methane-Oxidizing Microbiomes in Agriculturally Influenced Riparian Zones and Their Linkage to Reactive Nitrogen RemovalMontana State University, Bozeman, MT

Videos

Screenshot of video of the Arctic.

What the Fastest-Warming Region in the World Tells Us About the Future

A research team led by ORNL has been crisscrossing the Alaskan tundra for the past 12 years, collecting data as part of the NGEE Arctic project.

Scientists in the Arctic.

NGEE Arctic

NGEE Arctic scientists study the Arctic tundra by measuring changes in the environment throughout the year.

Screenshot of video that says researchers can update climate models to better predict the future of the land.

Indigenous Peoples Day

ORNL partners with Native Corporations across Alaska to conduct field work on Indigenous-owned land.